January 2019

Mark Scheme

Mock Paper (set1)

Pearson Edexcel GCE A Level Mathematics

Pure Mathematics 1 (9MA0/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can aet touch with us usina the details on our contact in us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is awarded.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 100
- 2. These mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- **bod** benefit of doubt
- **ft** follow through
- the symbol $\sqrt{}$ will be used for correct ft
- **cao** correct answer only
- **cso** correct solution only. There must be no errors in this part of the question to obtain this mark
- **isw** ignore subsequent working
- **awrt** answers which round to
- SC: special case
- **o.e.** or equivalent (and appropriate)
- **d** or **dep** dependent
- **indep** independent
- **dp** decimal places
- **sf** significant figures
- * The answer is printed on the paper or ag- answer given
- 4. All M marks are follow through.

A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but answers that don't logically make sense e.g. if an answer given for a probability is >1 or <0, should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response. If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used. If no such alternative answer is provided but the response is deemed to be valid, examiners must escalate the response for a senior examiner to review.

Quest	on Scheme	Marks	AOs
1 (a)	$A_{max}(B) = \frac{1}{2} \times 0.5 \times [1 + 2(e^{0.05} + e^{0.2} + e^{0.45}) + e^{0.8}]$	B1	1.1b
	Area(R) $\approx -\times 0.5 \times \lfloor \frac{1+2(e^{-}+e^{-}+e^{-})+e^{-}}{2} \rfloor$	<u>M1</u>	1.1b
	$\left\{ = \frac{1}{4} \times 10.90751301 = 2.726878252 \right\} = 2.73 \ (2 dp)$	A1	1.1b
		(3)	
(b)(i	$\left\{\int_{0}^{2} \left(4 + e^{\frac{1}{5}x^{2}}\right) dx\right\} = 4(2) + "2.73" = 10.73 \ (2 \ dp)$	B1ft	2.2a
(b)(ii) $\left\{\int_{1}^{3} e^{\frac{1}{5}(x-1)^{2}} dx\right\} = "2.73" (2 dp)$	B1ft	2.2a
		(2)	
		(5 n	narks)
Questi	on 1 Notes:		
(a)			
B1:	Outside brackets $\frac{1}{2} \times 0.5$ or $\frac{0.5}{2}$ or 0.25 or $\frac{1}{4}$		
M1:	For structure of trapezium rule [].		
	No errors are allowed, e.g. an omission of a <i>y</i> -ordinate or an extra <i>y</i> -ordinate or a r <i>y</i> -ordinate	epeated	
A1:	Correct method leading to a correct answer only of 2.73		
(b)(i)			
B1ft:	10.73 or a value which is 8 + their answer to part (a)		
	Note: Do not allow an answer of 10.6900 which is found directly from integrat	ion	
(b)(ii)			
B1ft:	2.73 or a value which is the same as their answer to part (a)		
	Note: Do not allow an answer of 2.6900 or 2.69 which is found directly from in	ntegration	

Questi	on Scheme	Marks	AOs
2	2 $PC^2 = 7.5^2 + 9.5^2 = 2(7.5)(9.5) \exp(-1.12) (\rightarrow PC = 12.21742507)$		1.1b
	$bc = 7.5 + 6.5 - 2(7.5)(6.5)\cos(\pi - 1.2) \{ \Rightarrow bc = 15.21745597 \}$	A1	1.1b
	Arc length $AB = 7.5(1.2) \ \{\Rightarrow \text{Arc length } AB = 9\}$	B1	1.1a
	Perimeter $AOCBA = 7.5 + 8.5 + 13.217423597 + 9$	M1	3.1a
	$\{= 38.21743597\} = 38.2 \text{ (cm) (1 dp)}$	A1	1.1b
		(5)	
		(5 n	narks)
Questi	on 2 Notes:		
M1:	Application of cosine rule for BC^2 or BC with any angle		
A1:	Correct application of cosine rule for BC^2 or BC using $\pi - 1.2$		
B1:	Arc length $AB = 7.5(1.2)$ or 9		
M1:	A complete strategy for finding the perimeter of the shape AOCBA		
A1:	38.2 cao		

Quest	on	Scheme	Marks	AOs
3		$3x^2 + k = 5x + 2$		
	E.g. 3x	$x^{2} - 5x + k - 2 = 0$ or $-3x^{2} + 5x + 2 - k = 0$	M1	1.1b
	{"	$b^2 - 4ac'' < 0 \implies $ $25 - 4(3)(k - 2) < 0$	M1	1.1b
		$25 - 12k + 24 < 0 \implies -12k + 49 < 0$		
		Critical value obtained of $\frac{49}{12}$ o.e.	B1	1.1b
		$k > \frac{49}{12}$ o.e.	A1	2.1
			(4)	
			(4 n	narks)
Questi	on 3 Notes:			
M1:	Forms a one-sided quad	ms a one-sided quadratic equation or gathers all terms into a single quadratic expression		
M1:	Understands that the give	lerstands that the given equation has no real roots by applying $b^2 - 4ac'' < 0$ to their one-sided		
	quadratic equation or to	adratic equation or to their one-sided quadratic expression $\{=0\}$		
B1:	See scheme	e scheme		
A1:	Complete process leading to the correct answer, e.g.			
	• $k > \frac{49}{12}$			
	• $\frac{49}{12} < k$			
	$\bullet \left\{k:k > \frac{49}{12}\right\}$			
	with no errors seen in th	neir mathematical argument		

Question	Scheme	Marks	AOs
4	$f(x) = \frac{12x}{3x+4} x \in \mathbb{R}, x \ge 0$		
(a)	$0 \leq f(x) < 4$	M1	1.1b
		A1	1.1b
		(2)	
(b)	$y = \frac{12x}{3x+4} \Rightarrow y(3x+4) = 12x \Rightarrow 3xy + 4y = 12x \Rightarrow 4y = 12x - 3xy$	M1	1.1b
	$4y = x(12 - 3y) \implies \frac{4y}{12 - 3y} = x$	M1	2.1
	Hence $f^{-1}(x) = \frac{4x}{12 - 3x}$ $0 \le x < 4$	A1	2.5
		(3)	
(c)	$ff(x) = \frac{12\left(\frac{12x}{3x+4}\right)}{3\left(\frac{12x}{3x+4}\right)+4}$	M1	1.1b
	$= \frac{\frac{144x}{3x+4}}{\frac{36x+12x+16}{3x+4}}$	M1	1.1b
	$=\frac{144x}{48x+16} = \frac{9x}{3x+1} * \{x \in \mathbb{R}, x \ge 0\}$	A1*	2.1
		(3)	
(d)	$\left\{ \mathrm{ff}(x) = \frac{7}{2} \Longrightarrow \right\} \frac{9x}{3x+1} = \frac{7}{2} \Longrightarrow 18x = 21x + 7 \Longrightarrow -3x = 7 \Longrightarrow x = \dots$	M1	1.1b
	Reject $x = -\frac{7}{3}$ As ff(x) is valid for $x \ge 0$, then ff(x) = $\frac{7}{2}$ has no solutions	A1	2.4
		(2)	
(d) Alt 1	$\left\{ \mathrm{ff}(x) = \frac{7}{2} \Longrightarrow \right\} f(x) = \mathrm{f}^{-1}\left(\frac{7}{2}\right) = \frac{4\left(\frac{7}{2}\right)}{12 - 3\left(\frac{7}{2}\right)}$	M1	1.1b
	$\{f(x) = \} f^{-1}\left(\frac{7}{2}\right) = \frac{28}{3}$ As $0 \le f(x) < 4$ and as $\frac{28}{3} > 4$, then $ff(x) = \frac{7}{2}$ has no solutions	A1	2.4
		(2)	
		(10 n	narks)

Quest	n	Scheme	Marks	AOs
4 (d)	Range of $ff(x)$	is $0 \leq \mathrm{ff}(x) < 3$	M1	1.1b
Alt 2	As $\frac{7}{2} > 3$, then	$ff(x) = \frac{7}{2}$ has no solutions	A1	2.4
			(2)	
Questi	n 4 Notes:			
(a) M1:	For one "end" fully c	correct; e.g. accept $f(x) \ge 0$ (not $x \ge 0$) or $f(x) < 4$ (not x and "values" e.g. accept $0 < f(x) \le 4$	< 4);	
A1:	Correct range using c Accept $0 \le f(x) < 4$	correct notation. , $0 \le y < 4$, $[0, 4)$, $f(x) \ge 0$ and $f(x) < 4$		
(b) M1:	Attempts to find the swapped <i>y</i> -terms) on	inverse by cross-multiplying and an attempt to collect all the x to one side.	e-terms (or	
M1:	A fully correct metho	od to find the inverse.		
A1:	A correct $f^{-1}(x) = \frac{1}{12}$	$\frac{4x}{2-3x}$, $0 \le x < 4$, o.e. expressed fully in function notation, in	cluding the	
Note:	domain, which may be correct or followed through from their part (a) answer for their range of f Writing $y = \frac{12x}{3x+4}$ as $y = \frac{4(3x+4)-16}{3x+4} \Rightarrow y = 4 - \frac{16}{3x+4}$ leads to a correct $f^{-1}(x) = \frac{1}{2} \left(\frac{16}{4-x} - 4 \right), \ 0 \le x < 4$			
(c)	×	, 		
M1:	Attempts to substitute $f(x) = \frac{12x}{3x+4}$ into $\frac{12f(x)}{3f(x)+4}$			
M1:	Applies a method of "rationalising the denominator" for their denominator.			
A1*:	Shows $ff(x) = \frac{9x}{3x+1}$ with no errors seen.			
	Note: The domain of $ff(x)$ is not required in this part.			
(d)				
M1:	Sets $\frac{9x}{3x+1}$ to $\frac{7}{2}$ and solves to find $x = \dots$			
A1:	Finds $x = -\frac{7}{3}$, rejects this solution as $ff(x)$ is valid for $x \ge 0$ only			
	Concludes that $ff(x)$	$=\frac{7}{2}$ has no solutions.		

Questi	on 4 Notes Continued:
(d)	
Alt 1	
M1:	Attempts to find $f^{-1}\left(\frac{7}{2}\right)$
A1:	Deduces $f(x) = f^{-1}\left(\frac{7}{2}\right) = \frac{28}{3}$ and concludes $ff(x) = \frac{7}{2}$ has no solutions because
	$f(x) = \frac{28}{3}$ lies outside the range $0 \le f(x) < 4$
(d)	
Alt 2	
M1:	Evidence that the upper bound of $ff(x)$ is 3
A1:	$0 \le \text{ff}(x) < 3$ and concludes that $\text{ff}(x) = \frac{7}{2}$ has no solutions because $\frac{7}{2} > 3$

Question	Scheme	Marks	AOs
5	Let a point Q have x coordinate $2+h$. So $y_Q = 4(2+h)^2 - 5(2+h)$	B1	1.1b
	{ <i>P</i> (2,6), <i>Q</i> (2+ <i>h</i> , 4(2+ <i>h</i>) ² – 5(2+ <i>h</i>))}		
	Gradient $PQ = \frac{4(2+h)^2 - 5(2+h) - 6}{4(2+h)^2 - 5(2+h) - 6}$	M1	2.1
	2+h-2	A1	1.1b
	$=\frac{4(4+4h+h^2)-5(2+h)-6}{2+h-2}$		
	$=\frac{16+16h+4h^2-10-5h-6}{2+h-2}$		
	$=\frac{4h^2+11h}{h}$		
	= 4h + 11	M1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\lim_{h \to 0} (4h+11) = 11$	A1	2.2a
		(5)	
5	$A(x + b)^2 = 5(x + b) = (Ax^2 - 5x)$	B1	1.1b
Alt 1	Gradient of chord = $\frac{4(x+h) - 5(x+h) - (4x - 5x)}{x+h-x}$	M1	2.1
		A1	1.1b
	$=\frac{4(x^2+2xh+h^2)-5(x+h)-(4x^2-5x)}{x+h-x}$		
	$=\frac{4x^2+8xh+4h^2-5x-5h-4x^2+5x}{x+h-x}$		
	$=\frac{8xh+4h^2-5h}{h}$		
	= 8x + 4h - 5	M1	1.1b
	$\frac{dy}{dx} = \frac{\lim_{h \to 0} (8x + 4h - 5) = 8x - 5 \text{ and so, at } P, \frac{dy}{dx} = 8(2) - 5 = 11$	A1	2.2a
		(5)	
		(5 n	narks)

Questi	on 5 Notes:
B1:	Writes down the y coordinate of a point close to P
	E.g. For a point Q with x coordinate $2+h$, $\{y_Q\} = 4(2+h)^2 - 5(2+h)$
M1:	Begins the proof by attempting to write the gradient of the chord PQ in terms of h
A1:	Correct expression for the gradient of the chord PQ in terms of h
M1:	Correct process to obtain the gradient of the chord PQ as $\alpha h + \beta$; $\alpha, \beta \neq 0$
A1:	Correctly shows that the gradient of PQ is $4h+11$ and applies a limiting argument to deduce that at
	the point P on $y = 4x^2 - 5x$, $\frac{dy}{dx} = 11$ E.g. $\lim_{h \to 0} (4h + 11) = 11$
	Note: δx can be used in place of h
Alt 1	
B1:	$4(x+h)^2 - 5(x+h)$, seen or implied
M1:	Begins the proof by attempting to write the gradient of the chord in terms of x and h
A1:	Correct expression for the gradient of the chord in terms of x and h
M1:	Correct process to obtain the gradient of the chord as $\alpha x + \beta h + \gamma$; $\alpha, \beta, \gamma \neq 0$
A1:	Correctly shows that the gradient of the chord is $8x + 4h - 5$ and applies a limiting argument to
	deduce that when $y = 4x^2 - 5x$, $\frac{dy}{dx} = 8x - 5$. E.g. $\lim_{h \to 0} (8x + 4h - 5) = 8x - 5$
	Finally, deduces that at the point <i>P</i> , $\frac{dy}{dx} = 11$
	Note: For Alt 1, δx can be used in place of h

Question	Scheme	Marks	AOs
6 (a)	$\left\{ u = e^{\frac{1}{2}x} \text{ or } x = 2\ln u \Longrightarrow \right\}$		
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2} \mathrm{e}^{\frac{1}{2}x} \text{ or } \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}u \text{ or } \frac{\mathrm{d}x}{\mathrm{d}u} = \frac{2}{u} \text{ or } \mathrm{d}x = \frac{2}{u}\mathrm{d}u \text{ or } 2\mathrm{d}u = u\mathrm{d}x, \text{ etc.}$	B1	1.1b
	<u>Criteria 1</u> $\left\{ x = 0 \Rightarrow a = e^0 \text{ and } x = 2 \Rightarrow b = e^{\frac{1}{2}(2)} \right\}$		
	$a=1, b=e$ or evidence of $0 \rightarrow 1$ and $2 \rightarrow e$		
	Criteria 2 (dependent on the first B1 mark)		
	$\int \frac{6}{(e^{\frac{1}{2}x} + 4)} dx = \int \frac{6}{(u+4)} \cdot \frac{2}{u} du = \int \frac{12}{u(u+4)} du$		
	Either Criteria 1 or Criteria 2	B1	1.1b
	Both Criteria 1 and Criteria 2		
	and correctly achieves the result $\int_{1}^{e} \frac{12}{u(u+4)} du$	B1	2.1
		(3)	
(b)	$\frac{12}{u(u+4)} \equiv \frac{A}{u} + \frac{B}{(u+4)} \Longrightarrow 12 \equiv A(u+4) + Bu$	M1	1.1b
	$u = 0 \Longrightarrow A = 3; \ u = -4 \Longrightarrow B = -3$	A1	1.1b
	$\begin{bmatrix} 12 \\ 12 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 21 = 21 = 21$	M1	3.1a
	$\left\{ \int \frac{1}{u(u+4)} du = \right\} \int \left(\frac{1}{u} - \frac{1}{(u+4)} \right) du = 3 \ln u - 3 \ln(u+4)$	A1ft	1.1b
	$\left\{\operatorname{So}, \left[3\ln u - 3\ln(u+4)\right]_{1}^{\mathrm{e}}\right\}$		
	$= (3\ln e - 3\ln(e+4)) - (3\ln 1 - 3\ln 5)$		
	$= 3\ln e - 3\ln(e+4) + 3\ln 5$		
	$=3\ln\left(\frac{5e}{e+4}\right)$ *	A1*	2.1
		(5)	
		(8 1	narks)

Questi	on 6 Notes:
(a)	
B1:	See scheme
B1:	See scheme
B1:	See scheme
	Note for Criteria 2: Must start from one of
	• $\int y dx$, with integral sign and dx
	• $\int \frac{6}{e^{\frac{1}{2}x} + 4} dx$, with integral sign and dx
	• $\int \frac{6}{e^{\frac{1}{2}x} + 4} \frac{dx}{du} du$, with integral sign and $\frac{dx}{du} du$
	and end at $\int \frac{12}{u(u+4)} du$, with integral sign and du , with no incorrect working
(b)	
M1:	Writing $\frac{12}{u(u+4)} \equiv \frac{A}{u} + \frac{B}{(u+4)}$, o.e. or $\frac{1}{u(u+4)} \equiv \frac{P}{u} + \frac{Q}{(u+4)}$, o.e. and a complete method for
	finding the values of both their A and their B (or their P and their Q)
	Note: This mark can be implied by writing down $\frac{"A"}{u} + \frac{"B"}{(u+4)}$ with values stated for their A
	and their <i>B</i> where either their $A = 3$ or their $B = -3$
A1:	Both their $A=3$ and their $B=-3$ (or their $P=\frac{1}{4}$ and their $Q=-\frac{1}{4}$ with a factor of 12 in front
	of the integral sign)
M1:	Complete strategy for finding $\int \frac{12}{u(u+4)} du$, which consists of
	• expressing $\frac{12}{u(u+4)}$ in partial fractions
	• and integrating $\frac{12}{u(u+4)} \equiv \frac{M}{u} \pm \frac{N}{(u\pm k)}$; $M, N, k \neq 0$; (i.e. <i>a two-term partial fraction</i>) to
	obtain both $\pm \lambda \ln(\alpha u)$ and $\pm \mu \ln(\beta(u \pm k)); \lambda, \mu, \alpha, \beta \neq 0$
A1ft:	Integration of both terms is correctly followed through from their M and their N
A1*:	Applies limits of e and 1 in u (or applies limits of 2 and 0 in x), subtracts the correct way round and
	uses laws of logarithms to correctly obtain $3\ln\left(\frac{5e}{e+4}\right)$ with no errors seen.

Question	Scheme	Marks	AOs
7	$3\sin\theta - 4\cos\theta \equiv R\sin(\theta - \alpha); R > 0, 0 < \alpha < 90^{\circ}$		
(a)	$\tan \alpha = \frac{4}{3}$ o.e.	M1	1.1b
	Either $R = 5$ or $\alpha = awrt 53.13$	B1	1.1b
	$5\sin(\theta - 53.13^\circ)$	A1	1.1b
		(3)	
(b)(i)	$G_{\rm max} = 17 + "5" = 22 (^{\circ}{\rm C})$	B1ft	3.4
		(1)	
(b)(ii)	$G = 17 + 3\sin(15t)^{\circ} - 4\cos(15t)^{\circ}; \ 0 \le t \le 17$		
	$20 = 17 + "5"\sin(15t - "53.13")$	M1	3.4
	$\sin(15t - "53.13") = \frac{3}{"5"}$ or $\sin(\theta - "53.13") = \frac{3}{"5"}$	M1	1.1b
	After midday solution $\Rightarrow 15t - "53.13" = 180 - 36.86989$		
	$\Rightarrow t = \frac{143.1301 + "53.13"}{15}$	M1	3.1b
	$\Rightarrow t = 13.0840 \Rightarrow \text{Time} = 6:05 \text{ p.m. or } 18:05$	A1	3.2a
		(4)	
		(8 n	narks)

Questi	on 7 Notes:
(a)	
M1:	For either $\tan \alpha = \frac{4}{3}$ or $\tan \alpha = \frac{3}{4}$ or $\tan \alpha = -\frac{4}{3}$ or $\tan \alpha = -\frac{3}{4}$
B1:	At least one of either $R = 5$ (condone $R = \sqrt{25}$) or $\alpha = awrt 53.13$
A1:	$5\sin(\theta - 53.13^\circ)$
(b)(i) B1ft: (b)(ii)	Either 22 or follow through "17 + their <i>R</i> from part (a)"
M1:	Realisation that the model $G = 17 + 3\sin(15t)^\circ - 4\cos(15t)^\circ$ can be rewritten as $G = 17 + "5"\sin(15t - "53.13")$ and applies $G = 20$
M1:	Rearranges their equation to give either $\sin(15t - "53.13") = \frac{3}{"5"}$ or $\sin(\theta - "53.13") = \frac{3}{"5"}$
	 Note: This mark can be implied by either 15t - "53.13" = 36.86989 or 143.1301 θ - "53.13" = 36.86989 or 143.1301
M1:	Uses the model in a complete strategy to find a value for <i>t</i> which is greater than 7 e.g. p.m. solution occurs when $15t - "53.13" = 180 - 36.86989$ and so rearranges to give $t =$, where <i>t</i> is greater than 7
A1:	Finds the p.m. solution of either $6:05$ p.m. or $18:05$ when the greenhouse temperature is predicted by the model to be 20° C

Question	Scheme	Marks	AOs
8 (i)	E.g. $y^2 - 4y + 7 = (y - 2)^2 - 4 + 7$	M1	2.1
	$=(y-2)^2+3 \ge 3$, as $(y-2)^2 \ge 0$	A 1	2.22
	and so $y^2 - 4y + 7$ is positive for all real values of y	AI	2.2a
		(2)	
(ii)	For an explanation or statement to show when (Bobby's) claim $e^{3x} \ge e^{2x}$ fails. This could be e.g. • when $x = -1$, $e^{-3} < e^{-2}$ or e^{-3} is not greater than or equal to e^{-2} • when $x < 0$, $e^{3x} < e^{2x}$ or e^{3x} is not greater than or equal to e^{2x}	M1	2.3
	 Followed by an explanation or statement to show when (Bobby's) claim e^{3x} ≥ e^{2x} is true. This could be e.g. x = 2, e⁶ ≥ e⁴ or e⁶ is greater than or equal to e⁴ when x ≥ 0, e^{3x} ≥ e^{2x} and a correct conclusion. E.g. (Bobby's) claim is sometimes true 	A1	2.4
		(2)	
(ii)	Assuming $e^{3x} \ge e^{2x}$, then $\ln(e^{3x}) \ge \ln(e^{2x}) \Longrightarrow 3x \ge 2x \Longrightarrow x \ge 0$	M1	2.3
Alt 1	Correct algebra, using logarithms, leading from $e^{3x} \ge e^{2x}$ to $x \ge 0$ and a correct conclusion. E.g. (Bobby's) claim is sometimes true	A1	2.4
(iii)	Assume that n^2 is even and <i>n</i> is odd. So $n = 2k + 1$, where <i>k</i> is an integer.	M1	2.1
	$n^2 = (2k+1)^2 = 4k^2 + 4k + 1$ So n^2 is odd which contradicts n^2 is even. So (Elsa's) claim is true.	A1	2.4
		(2)	
(iv)	 For an explanation or statement to show when (Ying's) claim "the sum of two different irrational numbers is irrational" fails This could be e.g. π, 9-π; sum = π + 9 - π = 9 is not irrational 	M1	2.3
	 Followed by an explanation or statement to show when (Ying's) claim "the sum of two different irrational numbers is irrational" is true. This could be e.g. π, 9 + π; sum = π + 9 + π = 2π + 9 is irrational and a correct conclusion. E.g. (Ying's) claim is sometimes true 	A1	2.4
		(2)	
		(8 n	narks)

Quest	Question 8 Notes:		
(i)			
M1:	Attempts to		
	• complete the square or		
	• find the minimum by differentiation or		
	• draw a graph of $f(y) = y^2 - 4y + 7$		
A1:	Completes the proof by showing $y^2 - 4y + 7$ is positive for all real values of y with no errors seen in		
	their working.		
(ii)			
M1:	See scheme		
A1:	See scheme		
(ii)			
Alt 1			
M1:	Assumes $e^{3x} \ge e^{2x}$, takes logarithms and rearranges to make x the subject of their inequality		
A1:	See scheme		
(iii)			
M1:	Begins the proof by negating Elsa's claim and attempts to define n as an odd number		
A1:	Shows $n^2 = 4k^2 + 4k + 1$, where <i>n</i> is correctly defined and gives a correct conclusion		
(iv)			
M1:	See scheme		
A1:	See scheme		

Questi	on Scheme	Marks	AOs
9 (a)	a) $\frac{\sin x}{1 \cos x} + \frac{1 - \cos x}{\sin x}$		
	$\frac{1-\cos x}{1-\cos x} = \frac{1-\cos x}{1-\cos x}$		
	$= \frac{\sin^2 x + (1 - \cos x)^2}{(1 - \cos x)\sin x}$	M1	2.1
	$= \frac{\sin^2 x + 1 - 2\cos x + \cos^2 x}{(1 - \cos x)\sin x}$	A1	1.1b
	$= \frac{1+1-2\cos x}{(1-\cos x)\sin x}$	M1	1.1b
	$= \frac{2 - 2\cos x}{(1 - \cos x)\sin x} = \frac{2(1 - \cos x)}{(1 - \cos x)\sin x} = \frac{2}{\sin x} = 2\operatorname{cosec} x \{k = 2\}$	A1	2.1
		(4)	
(b)	$\left\{\frac{\sin x}{1-\cos x} + \frac{1-\cos x}{\sin x} = 1.6 \Rightarrow\right\} 2\operatorname{cosec} x = 1.6 \Rightarrow \operatorname{cosec} x = 0.8$ As $\operatorname{cosec} x$ is undefined for $-1 < \operatorname{cosec} x < 1$	B1	2.4
	then the given equation has no real solutions.		
		(1)	
(b) Alt 1	$\left\{\frac{\sin x}{1-\cos x} + \frac{1-\cos x}{\sin x} = 1.6 \Rightarrow\right\} 2\operatorname{cosec} x = 1.6 \Rightarrow \sin x = 1.25$ As $\sin x$ is only defined for $-1 \leqslant \sin x \leqslant 1$ then the given equation has no real solutions.	B1	2.4
		(1)	
	(5 marks)		narks)
Questi	on 9 Notes:		
(a)			
M1:	Begins proof by applying a complete method of rationalising the denominator		
	Note: $\frac{\sin^2 x}{(1-\cos x)\sin x} + \frac{(1-\cos x)^2}{(1-\cos x)\sin x}$ is a valid attempt at rationalising the denominator		
A1:	Expands $(1 - \cos x)^2$ to give the correct result $\frac{\sin^2 x + 1 - 2\cos x + \cos^2 x}{(1 - \cos x)\sin x}$		
M1:	Evidence of applying the identity $\sin^2 x + \cos^2 x \equiv 1$		
A1:	Uses $\sin^2 x + \cos^2 x \equiv 1$ to show that $\frac{\sin x}{1 - \cos x} + \frac{1 - \cos x}{\sin x} \equiv 2 \operatorname{cosec} x$ with no errors seen		
(b) B1:	See scheme		
(b)			
Alt 1			
B1:	See scheme		

Questi	on Scheme	Marks	AOs
10	$V = 4\pi h(h+6) = 4\pi h^2 + 24\pi h$ $0 \le h \le 25$; $\frac{dV}{dt} = 80\pi$		
(a)	Time = $\frac{4\pi(24)(24+6)}{80\pi} = \frac{2880\pi}{80\pi} = 36$ (s) *	B1 *	3.4
		(1)	
(b)	When $t = 8$, $V = 80\pi(8) = 640\pi \implies 640\pi = 4\pi h(h+6)$	M1	3.1a
	$160 = h(h+6) \implies h^2 + 6h - 160 = 0 \implies (h+16)(h-10) = 0 \implies h = \dots$	M1	1.1b
	${h = -16, \text{ reject}}, h = 10$	A1	1.1b
	$\frac{\mathrm{d}V}{\mathrm{d}t} = 8\pi h + 24\pi$	M1	1.1b
	dh dh	A1	1.1b
	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \Longrightarrow\right\} (8\pi h + 24\pi)\frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi$	M1	3.1a
	When $h = 10$, $\left\{ \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}h}{\mathrm{d}t} = \right\} \frac{80\pi}{(8\pi(10) + 24\pi)} \left\{ = \frac{80\pi}{124\pi} \right\}$	M1	3.4
	When $h = 10$, $\frac{dh}{dt} = \frac{10}{13}$ (cm s ⁻¹) or awrt 0.769 (cm s ⁻¹)	A1	1.1b
		(8)	
		(9 n	narks)
Questi	on 10 Notes:		
(a)			
B1*:	Uses the model to show that it takes 36 seconds to fill the bowl from empty to a height of 24 cm		
(b)			
M1:	Complete strategy to find the value of <i>h</i> when $t = 8$		
M1:	Uses $\frac{dV}{dt} = 80\pi$ to deduce the volume of water in the bowl, V, after 8 seconds and	l sets this	
	result to $4\pi h(h+6)$		
A1:	Finds $h = 10$		
M1:	Differentiates V with respect to h to give $\pm \alpha h \pm \beta$; α , $\beta \neq 0$		
A1:	$8\pi h + 24\pi$		
M1:	A complete strategy of forming an equation relating $\frac{dh}{dt}$ to 80π		
	E.g. applies $\left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}h}\right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi$		
M1:	Substitutes their $h = "10"$ into their model for $\frac{dh}{dt}$ which is in the form $\frac{80\pi}{\left(\text{their }\frac{dV}{dh}\right)}$	$\overline{)}$,	
	where their h has been found from solving a quadratic equation in h	-	
A1:	$\frac{10}{13}$ or awrt 0.769		

Question	Scheme	Marks	AOs
11 (i)	$\{y = a^x \Rightarrow\}$ $\ln y = \ln a^x \Rightarrow \ln y = x \ln a \Rightarrow \frac{1}{y} \frac{dy}{dx} = \ln a$	M1	2.1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = y \ln a \implies \frac{\mathrm{d}y}{\mathrm{d}x} = a^x \ln a \ *$	A1*	1.1b
		(2)	
(i) Alt 1	$\{y = a^x \Longrightarrow\}$ $y = e^{x \ln a} \Rightarrow \frac{dy}{dx} = (\ln a)e^{x \ln a}$	M1	2.1
Alt I	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = a^x \ln a \ *$	A1*	1.1b
		(2)	
(ii)	$\frac{\mathrm{d}}{\mathrm{d}y}(2\tan y) = 2\sec^2 y$	M1	1.1b
	$\{x = 2\tan y \Longrightarrow\} \frac{dx}{dy} = 2\sec^2 y \qquad \text{or} \qquad 1 = (2\sec^2 y)\frac{dy}{dx}$	Al	1.1b
	$\frac{\mathrm{d}x}{\mathrm{d}y} = 2(1 + \tan^2 y) \qquad \text{or} \qquad 1 = 2(1 + \tan^2 y)\frac{\mathrm{d}y}{\mathrm{d}x}$	M1	1.1b
	E.g. $\frac{dx}{dy} = 2\left(1 + \left(\frac{x}{2}\right)^2\right) \Rightarrow \frac{dx}{dy} = 2\left(1 + \frac{x^2}{4}\right) \Rightarrow \frac{dx}{dy} = 2 + \frac{x^2}{2}$ $\Rightarrow \frac{dx}{dy} = \frac{4 + x^2}{2} \Rightarrow \frac{dy}{dx} = \frac{2}{4 + x^2}$	A1	2.1
		(4)	
(ii)	$\{x = 2 \tan y \Rightarrow\}$ $y = \arctan\left(\frac{x}{x}\right) \Rightarrow \frac{dy}{dy} = \frac{1}{\sqrt{1-x}} \times \left(\frac{1}{x}\right)$	M1	1.1b
Alt 1	$\begin{pmatrix} x & -1 & x & y \\ y & y & y & y \\ z & y & z & z \\ 1 & z & z \\ 1$	M1	1.1b
		A1	1.1b
	$\Rightarrow \frac{dy}{dx} = \frac{1}{2\left(1 + \frac{x^2}{4}\right)} \Rightarrow \frac{dy}{dx} = \frac{1}{\left(2 + \frac{x^2}{2}\right)} \Rightarrow \frac{dy}{dx} = \frac{1}{\left(\frac{4 + x^2}{2}\right)}$ $\Rightarrow \frac{dy}{dx} = \frac{2}{4 + x^2}$	A1	2.1
		(4)	
		(6 m	narke)
		(o n	1a1 KSJ

Questi	on 11 Notes:
(i)	
M1:	Applies the natural logarithm to both sides of $y = a^x$, applies the power law of logarithms and
	applies implicit differentiation to the result
A1*:	Shows $\frac{dy}{dx} = a^x \ln a$, with no errors seen
(i) Alt 1	
M1:	Rewrites $y = a^x$ as $y = e^{x \ln a}$ and writes $\frac{dy}{dx} = c e^{x \ln a}$, where c can be 1
A1*:	Shows $\frac{dy}{dx} = a^x \ln a$, with no errors seen
(ii)	
M1:	Evidence of $2 \tan y$ being differentiated to $2 \sec^2 y$
A1:	Differentiates correctly to show that $x = 2 \tan y$ gives $\frac{dx}{dy} = 2 \sec^2 y$ or $1 = (2 \sec^2 y) \frac{dy}{dx}$
M1:	Applies $\sec^2 y = 1 + \tan^2 y$ to their differentiated expression
A1:	Shows that $\frac{dy}{dx} = \frac{2}{4+x^2}$, with no errors seen
(ii)	
Alt 1	
M1:	Evidence of $\arctan(\lambda x)$; $\lambda \neq 0$ being differentiated to $\lambda \left(\frac{1}{1+(\mu x^2)}\right)$; $\lambda, \mu \neq 0$
	Note: λ can be 1 for this mark
M1:	Differentiates $y = \arctan(\lambda x)$; $\lambda \neq 0$, $\lambda \neq 1$ to give an expression of the form $\frac{1}{(1+(\lambda x)^2)} \times (\lambda)$
A1:	Differentiates $y = \arctan\left(\frac{x}{2}\right)$ correctly to give $\frac{dy}{dx} = \frac{1}{\left(1 + \left(\frac{x}{2}\right)^2\right)} \times \left(\frac{1}{2}\right)$, o.e.
A1:	Shows that $\frac{dy}{dx} = \frac{2}{4+x^2}$, with no errors seen

Question	Scheme	Marks	AOs
12 (a)	$y = ax^{2} + c$ $x = 0, y = 4 \Longrightarrow c = 4$	M1	3.3
	$x = 50, y = 24 \implies 24 = a(50)^2 + 4 \implies a = \frac{20}{50^2} = \frac{1}{125}$ or 0.008	M1	3.4
	$y = \frac{1}{125}x^2 + 4$ {-50 $\leq x \leq 50$ }	A1	1.1b
		(3)	
(a) Alt 1	$y = ax^{2} + bx + c$ $x = 0, y = 4 \Rightarrow c = 4$ $x = 50, y = 24 \Rightarrow 24 = 2500a + 50b + 4$ $x = 50, x = 24 \Rightarrow 24 \Rightarrow 2500a = 50b + 4$	M1	3.3
	$x = -50, y = 24 \implies 24 \equiv 2500a - 50b + 4$ $0 = 100b \implies b = 0$ $24 = 2500a + 4 \implies a = \frac{20}{2500} = \frac{1}{125} \text{ or } 0.008$	M1	3.4
	$y = \frac{1}{125}x^2 + 4 \qquad \{-50 \le x \le 50\}$	A1	1.1b
		(3)	
(b)	$x = 50 - 19 = 31 \implies y = \frac{1}{125}(31)^2 + 4$	M1	3.4
	$y = 11.688 \{< 12\} \implies$ Lee can safely inspect the defect	A1	2.2b
		(2)	
(b) A lt 1	$12 = \frac{1}{125}x^2 + 4 \implies 8 = \frac{1}{125}x^2 \implies x = \sqrt{1000}$	M1	3.4
Alt I	$x = 31.6227766 \Rightarrow \text{Distance from tower} = 50 - 31.6227766$ $= 18.3772234 \{<19\} \Rightarrow \text{Lee can safely inspect the defect}$	A1	2.2b
		(2)	
(c)	 E.g. The thickness/diameter of the cable has not been incorporated into the current model Weather conditions (e.g. strong winds) may affect the shape of the curve Walkway may not be completely horizontal 	B1	3.5b
		(1)	
		(6 1	narks)

Quest	ion 12 Notes:
(a)	
M1:	Attempts to use a model of the form $y = ax^2 + c$ (containing no x term)
M1:	Uses the constraints $x = 0$, $y = 4$ and $x = 50$, $y = 24$ (or $x = -50$, $y = 24$) to find the
	values for their c and for their a
A1:	$y = \frac{1}{125}x^2 + 4$ (Ignore $-50 \le x \le 50$)
(a)	
Alt 1	
M1:	Attempts to use a model of the form $y = ax^2 + bx + c$ and finds or deduces that $b = 0$
M1:	Uses the constraints $x = 0$, $y = 4$; $x = 50$, $y = 24$ and $x = -50$, $y = 24$ to find the
	values for their c, for their b and for their a
A1:	$y = \frac{1}{125}x^2 + 4$ (Ignore $-50 \le x \le 50$)
(b)	
M1:	Substitutes $x = 50 - 19 \{= 31\}$ or $x = -50 + 19 \{= -31\}$ into their quadratic model
A1:	Obtains $y = awrt 11.7$ and infers from the model that Lee can safely inspect the defect
(b)	
Alt 1	
M1:	Substitutes $y = 12$ into their quadratic model and rearranges to find $x =$
A1:	Obtains distance from tower as awrt 18.4 and infers from the model that Lee can safely inspect the
	defect
(c)	
B1:	See scheme

Question	Scheme	Marks	AOs
13 (a)	$\sum_{n=1}^{11} \ln(p^n) = \ln p + \ln p^2 + \ln p^3 + \dots + \ln p^{11}$ = $\ln p + 2\ln p + 3\ln p + \dots + 11\ln p$ = $\frac{11}{2}(2\ln p + (11-1)\ln p)$ or $\frac{1}{2}(11)(12)\ln p$	M1	3.1a
	$\frac{2}{2} = 66 \ln p \qquad \{k = 66\}$	Al	1.1b
		(2)	
(b)	$S = \sum_{n=1}^{11} \ln(8p^n) = \ln 8p + \ln 8p^2 + \ln 8p^3 + \dots + \ln 8p^{11}$ $= 11\ln 8 + 66\ln p$	M1	1.1b
	e.g. • $11\ln 8 + 66\ln p = 11\ln 2^3 + 66\ln p = 33\ln 2 + 66\ln p$ $= 33(\ln 2 + 2\ln p) = 33(\ln 2 + \ln p^2) = 33\ln(2p^2) *$ • $11\ln 8 + 66\ln p = 11\ln 2^3 + 66\ln p = 33\ln 2 + 66\ln p$ $= \ln(2^{33}p^{66}) = \ln((2p^2)^{33}) = 33\ln(2p^2) *$	A1*	2.1
		(2)	
(c)	$S < 0 \Rightarrow 33\ln(2p^2) < 0 \Rightarrow \ln(2p^2) < 0$		
	so either $0 < 2p^2 < 1$ or $2p^2 < 1$	M1	2.2a
	$\Rightarrow p^2 < \frac{1}{2} \text{ and } p > 0 \Rightarrow 0$		
	In set notation, e.g. $\left\{ p: 0$	A1	2.5
		(2)	
		(6 1	narks)

Questi	Question 13 Notes:		
(a)			
M1:	Attempts to find $\sum_{n=1}^{11} \ln(p^n)$ by using a complete strategy of		
	• applying the power law of logarithms		
	followed by either		
	• applying the correct formula for the sum to <i>n</i> terms of an arithmetic series		
	• applying the correct formula $\frac{1}{2}n(n+1)\ln p$		
	• summing the individual terms to give $66 \ln p$		
A1:	$66 \ln p$ from correct working		
(b)			
M1:	Deduces S or $\sum_{n=1}^{11} \ln(8p^n) = 11\ln 8 + (\text{their answer to part (a)})$		
A1*:	and produces a logical argument to correctly show that $S = 33 \ln(2p^2)$ with no errors seen		
(c)			
M1:	Applies $S < 0$ to give $\ln(2p^2) < 0$ and deduces {e.g. by considering the graph of $y = \ln x$ }		
	that either		
	• $0 < 2p^2 < 1$		
	• $2p^2 < 1$		
A1:	Correct answer using set notation. E.g.		
	• $\left\{ p: 0$		
	• $\left\{ p: 0$		
	• $\{p: p > 0\} \cap \left\{p: p < \frac{1}{\sqrt{2}}\right\}$		
	• $\{p: p > 0\} \cap \left\{p: p < \frac{\sqrt{2}}{2}\right\}$		

Question	Scheme	Marks	AOs
14	$y = 4xe^{-2x} \Rightarrow \begin{cases} u = 4x v = e^{-2x} \\ \frac{du}{dx} = 4 \frac{dv}{dx} = -2e^{-2x} \end{cases}, \begin{cases} u = 4x \frac{du}{dx} = 4 \\ \frac{dv}{dx} = e^{-2x} v = -\frac{1}{2}e^{-2x} \end{cases}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4\mathrm{e}^{-2x} - 8\mathrm{r}\mathrm{e}^{-2x}$	M1	2.1
	dx = 4c ove	A1	1.1b
	At $P(1, 4e^{-2})$, $m_{\rm T} = 4e^{-2} - 8e^{-2} = -4e^{-2} \implies m_{\rm N} = \frac{-1}{-4e^{-2}}$ or $\frac{1}{4}e^{2}$	M1	1.1b
	<i>l</i> : $y - 4e^{-2} = \frac{e^2}{4}(x-1)$ and $y = 0 \implies -4e^{-2} = \frac{e^2}{4}(x-1) \implies x =$	M1	3.1a
	$\left\{ y = 0 \Longrightarrow x = 1 - 16e^{-4} \right\}$		
	$\int 4r e^{-2x} dr = -2r e^{-2x} - \int -2e^{-2x} dr$	M1	2.1
		Al	1.1b
	$= -2x\mathrm{e}^{-2x} - \mathrm{e}^{-2x}$	A1	1.1b
	$\frac{\text{Criteria}}{\left[-2xe^{-2x} - e^{-2x}\right]_{0}^{1}} = \left(-2e^{-2} - e^{-2}\right) - \left(0 - 1\right) \left\{=1 - 3e^{-2}\right\}$ • Area triangle = $\frac{1}{2}\left(16e^{-4}\right)\left(4e^{-2}\right) \left\{=32e^{-6}\right\}$	M1	2.1
	$A_{rea}(P) = 1 - 2e^{-2} - 32e^{-6} - 3e^{4} - 32$	M1	3.1a
	$\frac{\operatorname{Aica}(n) - 1 - 5c}{e^6} = \frac{52c}{52c} \text{or} \frac{1}{e^6}$	Al	1.1b
		(10)	
		(10 n	narks)

Questi	Question 14 Notes:		
M1:	Begins the process to find where <i>l</i> intersects the <i>x</i> -axis by differentiating $y = 4xe^{-2x}$ using the		
	product rule		
A1:	$\frac{dy}{dx} = 4e^{-2x} - 8xe^{-2x}$, which can be simplified or un-simplified		
M1:	A correct method to find the value for the gradient of the normal using $m_N = \frac{-1}{\text{their } m_T}$		
M1:	Complete strategy to find where <i>l</i> intersects the <i>x</i> -axis		
	i.e. Applying $y - 4e^{-2} = m_N(x-1)$, (where $m_N \neq$ their m_T) followed by setting $y = 0$ and rearranging to give $x =$		
M1:	Begins the process of finding the area under the curve by applying integration by parts in the correct		
	direction to give $\pm \alpha x e^{-2x} \pm \int \beta e^{-2x} \{ dx \}; \ \alpha, \beta \neq 0; \alpha < 4$		
A1:	$4xe^{-2x} \rightarrow -2xe^{-2x} - \int -2e^{-2x} \{dx\}$, which can be simplified or un-simplified		
A1:	$4xe^{-2x} \rightarrow -2xe^{-2x} - e^{-2x}$, which can be simplified or un-simplified		
M1:	At least one of the two listed criteria		
M1:	Both criteria satisfied, followed by a complete strategy of subtracting the areas to find $Area(R)$		
A1:	Correct exact answer. E.g. $1 - 3e^{-2} - 32e^{-6}$ or $\frac{e^6 - 3e^4 - 32}{e^6}$, o.e.		

Questi	on Scheme	Marks	AOs	
15	$\overrightarrow{OA} = \begin{pmatrix} -3\\2\\7 \end{pmatrix}, \ \overrightarrow{OB} = \begin{pmatrix} 3\\-1\\p \end{pmatrix}, \ \overrightarrow{BC} = \begin{pmatrix} 0\\6\\-7 \end{pmatrix}, \ \overrightarrow{AD} = \begin{pmatrix} 2\\5\\-4 \end{pmatrix}; \ p \text{ is a constant}$			
(a)	$\begin{cases} \overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \begin{pmatrix} -3\\2\\7 \end{pmatrix} + \begin{pmatrix} 2\\5\\-4 \end{pmatrix} \Rightarrow \end{cases} \overrightarrow{OD} = \begin{pmatrix} -1\\7\\3 \end{pmatrix}$	B1	1.1b	
		(1)		
(b)	$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} = \begin{pmatrix} 3 \\ -1 \\ p \end{pmatrix} + \begin{pmatrix} 0 \\ 6 \\ -7 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ p -7 \end{pmatrix}$	M1	3.1a	
	$\overrightarrow{DC} = \overrightarrow{OC} - \overrightarrow{OD} = \begin{pmatrix} 3\\5\\p-7 \end{pmatrix} - \begin{pmatrix} -1\\7\\3 \end{pmatrix} = \begin{pmatrix} 4\\-2\\p-10 \end{pmatrix}$	A1	1.1b	
	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 3 \\ -1 \\ p \end{pmatrix} - \begin{pmatrix} -3 \\ 2 \\ 7 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ p - 7 \end{pmatrix}$	M1	3.1a	
	so $AB = 1.5 DC \implies p - 7 = 1.5(p - 10)$			
	$p-7 = 1.5p - 15 \implies 8 = 0.5p \implies p = 16$	A1	1.1b	
		(4)		
(5 marks)				
Question 15 Notes:				
(a) B1:	(a) B1: $\left\{ \overrightarrow{OD} \right\} = \begin{pmatrix} -1 \\ 7 \\ 3 \end{pmatrix}$			
(b)				
M1:	Complete strategy for finding the vector \overrightarrow{DC} or \overrightarrow{CD} (e.g. finding \overrightarrow{OC} followed by \overrightarrow{DC})			
A1:	For either $\{\overline{DC}\} = \begin{pmatrix} 4\\ -2\\ p-10 \end{pmatrix}$ or $\{\overline{CD}\} = \begin{pmatrix} -4\\ 2\\ -p+10 \end{pmatrix}$			

M1: Complete strategy of

- finding the vector \overrightarrow{AB} (or \overrightarrow{BA})
- discovering that \overrightarrow{AB} (or \overrightarrow{BA}) is parallel to \overrightarrow{DC} (or \overrightarrow{CD}) and so writes an equation of the form (their **k** component in terms of p of $\pm \overrightarrow{AB}$) = δ (their **k** component in terms of p of $\pm \overrightarrow{DC}$), where $\delta \neq 1$ is a constant
- A1: Correct solution leading to p = 16