GCE

Mathematics (MEI)

Advanced GCE
Unit 4762: Mechanics 2

Mark Scheme for January 2011

Q 1		mark	notes
(i)	Let normal reaction be R $\sin \alpha=\sqrt{1-0.8^{2}}=0.6$ $\begin{aligned} & R=2.5 \times 9.8 \times 0.8 \\ & F_{\max }=0.85 \times R=16.66 \end{aligned}$ Wt cpt down slope is $2.5 \times 9.8 \times 0.6=14.7$ $16.66>14.7$ so at rest	B1 M1 B1 F1 B1 E1	Accept any form and implied Use of $F_{\text {max }}=\mu R$ Expression for R; may be implied FT their R FT if their F and weight component show given result If g omitted, allow B1M1B0F1B0E1, so 4/6 [Award as follows for use of $\tan \alpha<\mu$: B1 $\tan \alpha=\frac{3}{4}$ E1 $\tan \alpha<\mu$ shown]
(ii)	Let the speeds down the plane be v_{A} and v_{B}. PCLM down the plane $\begin{aligned} & 1.5 \times 16=2.5 v_{A}+1.5 v_{\mathrm{B}} \\ & \text { so } 5 v_{\mathrm{A}}+3 v_{\mathrm{B}}=48 \end{aligned}$ NEL + ve down the plane $\begin{aligned} & \frac{v_{\mathrm{A}}-v_{\mathrm{B}}}{0-16}=-0.4 \\ & v_{\mathrm{A}}-v_{\mathrm{B}}=6.4 \\ & v_{\mathrm{A}}=8.4 \text { so } 8.4 \mathrm{~m} \mathrm{~s}^{-1} \text { down plane } \\ & v_{\mathrm{B}}=2 \text { so } 2 \mathrm{~m} \mathrm{~s}^{-1} \text { down plane } \end{aligned}$	M1 A1 M1 A1 E1 F1	PCLM Any form NEL. Allow sign errors Any form Condone direction not clear if +8.4 seen Condone direction not clear if +2 seen. SC1 if 2 equations obtained and 8.4 substituted into one to obtain answer 2 (instead of E1F1)
(iii)	$1.5 \times(2-16)$ down plane $=-21 \mathrm{~N}$ s down the plane so 21 Ns up the plane	M1 A1 A1 3	Use of $m(\mathbf{v}-\mathbf{u}) \quad$ If impulse on A found, treat as MR unless final answer relates this to impulse on B $\pm 21 \mathrm{~N}$ s Direction explicitly commented on

Q 1		mark	notes
(iv)	either $\left(2.5 \times 9.8 \times 0.6-F_{\max }\right) \times t=2.5(0-8.4)$ $\text { so } t=10.7142 \ldots 10.7 \text { s (3 s. f.) }$ or Using N2L down the plane $a=-0.784$ $\text { using } v=u+a t, t=10.7142 \ldots 10.7 \mathrm{~s} \text { (3 s. f.) }$ or $\begin{aligned} & 0.5 \times 2.5 \times 8.4^{2}+(14.7-16.66) x=0 \\ & x=45 \\ & T=10.7142 \ldots . .10 .7(3 \text { s. f. }) \end{aligned}$	M1 B1 A1 A1 M1 A1 M1 A1 M1 A1 M1 A1 4	Using Impulse-momentum (must use 8.4) . sufficient to consider one term on LHS Either side correct Allow only sign errors cao Using N2L ; sufficient to consider one force term Allow sign errors Using appropriate suvat must use a or- a found by use of N2L and $u=8.4$ cao Use energy with 8.4, sufficient to consider one non-KE term Using appropriate suvat cao
		19	

Q 2		mark	notes
(a)	Energy: $\frac{1}{2} \times 0.004 \times v^{2}+\frac{1}{2} \times 0.060 \times V^{2}=0.8$ $v^{2}+15 V^{2}=400$ PCLM in \mathbf{i} direction: $0.06 \mathrm{~V}-0.004 v=0$ $v=15 \mathrm{~V}$ Solving $\begin{aligned} & (15 \mathrm{~V})^{2}+15 V^{2}=400 \\ & \text { so } V^{2}=\frac{400}{240}=\frac{5}{3} \text { and } \mathbf{V}=\sqrt{\frac{5}{3}} \mathbf{i} \\ & \mathbf{v}=-15 \sqrt{\frac{5}{3}} \mathbf{i} \quad(=-\sqrt{375} \mathbf{i}) \end{aligned}$	M1 A1 M1 A1 M1 A1 F1 A1 8	Use of KE in two terms in an equation. Any form PCLM. Accept sign errors. Any form Valid method for elimination of v or V from a linear and a quadratic Accept 1.29099...i Accept no direction Accept - 19.3649...i Accept no direction Second answer follows from first (Relative) directions indicated - accept diagram. Both speeds correct.
(b) (i)	W is work done by resistances on car $\frac{1}{2} \times 800 \times\left(12^{2}-30^{2}\right)=-800 \times 9.8 \times 20+W$ $W=-145600$ so 145600 J done by car against resistances	M1 B1 A1 A1 4	Use of WE. Must have KE, W and GPE. Allow -W Both KE terms. Accept sign error All correct with W or $-W$ cao

Q 2		mark	notes
(ii)	either The slope is $18 \times 25=450 \mathrm{~m}$ long $\begin{aligned} & \frac{800 \times 9.8 \times 20+750 \times 450}{25} \\ & =19772 \mathrm{~W} \end{aligned}$ or The angle of the slope is arcsin $(1 / 22.5)$ $\begin{aligned} & \left(800 \times 9.8 \times \frac{1}{22.5}+750\right) \times 18 \\ & =19772 \mathrm{~W} \end{aligned}$	B1 M1 M1 A1 A1 B1 M1 M1 A1 A1 5	Use of $P=($ Work done $) /$ (elapsed time) used for at least one work done term WD is force \times distance used for at least one force Allow only sign errors both terms cao. Use of $P=F v$ used for at least one term Attempt at weight component Allow only sign errors both terms cao.
		17	

Q3		m a r k	
(i)	Horizontal $X-50=0$ Vertical: $R-Y-45=0$	B1 B1	Any form Any form
(ii)	a. c. moments about A $1 \times R=3 \times 45$ so $R=135$ so $135-Y-45=0$ and $Y=90$		
(iii)	In analysis below all internal forces are taken as tensions	B1	E1
E1		Clearly shown Shown	

Q 3		mark	notes
(iv)	At C $\uparrow T_{\mathrm{CD}} \cos 30-45=0 \text { so } T_{\mathrm{CD}}=30 \sqrt{3}$ and force in CD is $30 \sqrt{3} \mathrm{~N}(\mathrm{~T})$ $\leftarrow T_{\mathrm{BC}}+T_{\mathrm{CD}} \cos 60=0 \text { so } T_{\mathrm{BC}}=-15 \sqrt{3}$ and force in BC is $15 \sqrt{3} \mathrm{~N}$ (C) At D $\downarrow T_{\mathrm{BD}} \cos 30+T_{\mathrm{CD}} \cos 30=0$ so $T_{\mathrm{BD}}=-30 \sqrt{3}$ and force in BD is $30 \sqrt{3} \mathrm{~N}$ (C) $\leftarrow T_{\mathrm{AD}}+T_{\mathrm{BD}} \cos 60-T_{\mathrm{CD}} \cos 60-50=0$ so $T_{\mathrm{AD}}=50+30 \sqrt{3}$ and the force in AD is $50+30 \sqrt{3} \mathrm{~N}(\mathrm{~T})$ At A $\downarrow T_{\mathrm{AB}} \cos 30+90=0$ so $T_{\mathrm{AB}}=-60 \sqrt{3}$ and the force in AB is $60 \sqrt{3} \mathrm{~N}(\mathrm{C})$	M1 M1 M1 B1 A1 F1 F1 F1 F1 B1 10	Equilibrium attempted at a pin-joint Equilibrium attempted at a $2^{\text {nd }}$ pin-joint Either Equilibrium equation for $2^{\text {nd }}$ direction at a pin-joint or $3^{\text {rd }}$ pin-joint considered At least 3 equations of resolution correct or follow through At least 4 T/C correct
(v)	The equilibria at C depend only on the framework geometry and the 45 N . These are not changed so forces in CB and CD are not changed	E1 E1 2	Resolve in two directions at C and obtain same results as in (iv) M1A1
		19	

Q 4		mark	notes
(i)	$(2,2.5)$	$\begin{array}{ll} \text { B1 } & \\ & 1 \\ \hline \end{array}$	Condone writing as a vector
(ii)	By symmetry, $\bar{y}=2.5$ For $\bar{x}:\left(5 h+\frac{1}{2} \times 5 \times 6\right) \bar{x}=5 h \times\left(-\frac{h}{2}\right)+\frac{1}{2} \times 5 \times 6 \times 2$ so $(5 h+15) \bar{x}=-2.5 h^{2}+30$ so $5(h+3) \bar{x}=2.5\left(12-h^{2}\right)$ and $\bar{x}=\frac{12-h^{2}}{2(h+3)}$	B1 M1 A1 A1 A1 E1 6	Some justification needed These next 4 marks may be obtained from correct FT of their "2" from (i) $1^{\text {st }}$ term RHS correct (allow sign error) Either other term correct All correct Clearly shown, including signs.
(iii)	Need $\bar{x}>0$ So $\frac{12-h^{2}}{2(h+3)}>0$ Hence $12-h^{2}>0$ Since $h>0,0<h<2 \sqrt{3}$	M1 B1 A1	Allow $\bar{x} \geq 0$ or $=0$ $2 \sqrt{ } 3$ or $-2 \sqrt{ } 3$ oe seen Accept only + ve root mentioned. WWW for signs Accept $h<2 \sqrt{3}$ as answer strict inequality for final A mark

Q4		mark	notes
Q4 (iv)	continued When $h=3, \bar{x}=0.25$ Let mag of vert force be $T \mathrm{~N}$ a.c moments about axis thro' O $T \times 6-15 \times 0.25=0$ so $T=0.625$ so 0.625 N	B1 M1 A1 3	Could be scored in (v) If moments about another point need all relevant forces. Allow sign errors. Condone use of 15 g cao
(v)	Let magnitude of force be $U \mathrm{~N}$ a.c. moments about axis thro’ D $\begin{aligned} & U \cos 30 \times 5-15 \times(3+0.25)=0 \\ & U=11.25833 \ldots \text { so } 11.3 \mathrm{~N}(3 \text { s. f. }) \end{aligned}$	M1 B1 A1 A1 4	Each term must be a moment. If moments about another point need all relevant forces. Condone use of 15 g . moment of U ($5 U \cos 30$ or ...) oe $(3+0.25) \text { oe }$ cao
		17	

