G494 Rise and Fall of the Clockwork Universe

Qı	uestion	Expected Answers		Additional Guidance
1	(a)	J kg ⁻¹	1	
	(b)	Ns	1	look for capital n, not lower case
2	(a)	$\lambda = 1.3 \times 10^{-5}$	1	accept 1.28×10 ⁻⁵ but not 1.2×10 ⁻⁵ (incorrect rounding)
	(b)	the probability per second; of a decay / change of a (single) nucleus/atom	1	accept chance per second / unit time look for mention of nucleus or atom, but not particle / sodium-24 accept alternative answer: fraction of nucleii / atoms for [1] decaying per second for [1]
3	(a)	$\Delta p = (0.15 \times 5) \times 700 = 525 \text{ kg m s}^{-1}$	1	accept correct reverse calculation: e.g. 500 kg m s ⁻¹ gives 4.8 s for [1]
	(b)	$p_{\text{initial}} = 120 \times 60 = +720 \text{ Ns}$ $p_{\text{final}} = +720 - 525 = 195 \text{ Ns}$ $v_{\text{final}} = +195 / 120 = 1.6(3) \text{ m s}^{-1}$	2	evidence of correct calculation of initial momentum (±) for [1] ecf: 500 kg m s ⁻¹ gives 1.8(3) m s ⁻¹ for [2] ignore sign of final answer alternative method for [2]: change of velocity = 525/120 = 4.38 m s ⁻¹ final velocity = 6.0 - 4.38 = 1.6(3) m s ⁻¹ allow [1] for correct change of velocity allow final mass of astronaut = 119.25 kg to give 1.6(4) m s ⁻¹
4	(a)	<i>γ</i> = 1.3 <u>4</u>	1	look for more than just 1.3
	(b)	1.1×10 ⁻⁶ s	1	
5	(a)	minus (-); 4.9×10 ⁹ J	1	look for minus sign with their final answer (from whatever formula)
	(b)	A	1	
6	(a)	A	1	
	(b)	С	1	remember All Able Candidates

Mark Scheme

Question	Expected Answers		Additional Guidance	
7	25 mm peak at 4 Hz; tends towards zero above 4 Hz; 5 mm at 0 Hz; mightude / mm 20 15 10 10 10 10 10 10 10 10 10 10 10 10 10	1 1 1	look for maximum at 4 Hz, sharpness of peak is not important must be at or below 2.5 mm at 16 Hz (by eye) must be at 5 mm at 0 Hz (by eye)	
8	Microwave radiation from the universe can be detected in all directions. The red-shift of lines in a galaxy's spectrum is proportional to its distance from our galaxy.	1	correct pattern of ticks for [2] one mistake for [1] a mistake is: a tick in the wrong place a missing tick an extra tick accept any unambiguous correct response	
	Total Section A	20		

Que	Question		Expected Answers	Marks	Additional Guidance
9	(a)	(i)	N = PV/kT;	1	evidence of this rule (as algebra or subsitution of numbers) [1] accept <i>PV</i> = <i>NkT</i> or <i>nkT</i> or <i>nRT</i> or <i>NRT</i> as the rule
			T _A = 27 + 273 = 300 K; N = 1.1(4)×10 ²²	1	correct conversion of °C to K for [1] ecf incorrect conversion of °C to K e.g. $T_A = 27$ K gives 1.3×10^{23} for [2] correct reverse calculation for [3]: $N = 1 \times 10^{22}$ gives $T = 343$ K for [2] and therefore 70°C for [1] $N = 1 \times 10^{22}$ and $T = 300$ K gives $V = 4.2 \times 10^{-4}$ m ³ for [3] $N = 1 \times 10^{22}$ and $T = 300$ K gives $P = 8.8 \times 10^{4}$ Pa for [3]
		(ii)	Р _в = 20×10 ⁵ Ра;	1	use of $k = 1.38 \times 10^{-23}$ gives $N = 1.16 \times 10^{22}$ for [3] evidence of correct reading off graph for [1]
			full value <i>N</i> from (i) gives $T_{\rm B}$ = 750 - 273 = 477 °C;	1	allow $P_{\rm B}$ = 17 to 21×10 ⁵ Pa for [1] and subsequent calculation for [1] no ecf for $P_{\rm B}$ = 20
			accept answers rounded to 2 sig fig		$N = 1 \times 10^{22} \text{ gives } T_{B=} 857 \text{ K and } 584^{\circ}\text{C for [2]}$ $N = 1.1 \times 10^{22} \text{ gives } T_{B=} 779 \text{ K and } 506^{\circ}\text{C for [2]}$ $N = 1.14 \times 10^{22} \text{ gives } T_{B=} 752 \text{ K and } 479^{\circ}\text{C for [2]}$ accept correct reverse calculation for [2] e.g. $T = 273 + 500 = 773 \text{ K and } N = 1 \times 10^{22} \text{ gives } V = 5.4 \times 10^{-5} \text{ m}^{3} \text{ [1]}$ comparable to $6 \times 10^{-5} \text{ m}^{3} \text{ [1]}$ e.g. $T = 273 + 500 = 773 \text{ K and } N = 1 \times 10^{22} \text{ gives } P = 1.8 \times 10^{6} \text{ Pa [1]}$ comparable to $20 \times 10^{5} \text{ Pa [1]}$

Mark Scheme

Qı	Question		Expected Answers	Marks	Additional Guidance
	(b)	(i)	increased their speed/velocity;	1	not just increase of kinetic energy
			greater momentum change per collision (with the	1	look for complete statement for [1]
			walls);	1	not just more collisions
			increases rate of collisions (with walls)		QWC should include the full story for the third mark
		(ii)	number of molecules / particles doesn't change;	1	NOT just ideal gas
			$T = \frac{PV}{Nk} = \frac{35 \times 10^5 \times 0.5 \times 10^{-4}}{1.14 \times 10^{22} \times 1.4 \times 10^{-23}} = 1096 \text{ K}$	1	<i>N</i> : 1×10^{22} gives 1250 K for [1] <i>V</i> = 0.6×10^{-4} m ³ gives 1316 K or 1500 K for [1] look for correct method with sensible values and answer between 1522 K and 1090 K
	(c)		work done by gas;	1	for example:
			equals decrease in internal energy	1	gas does work on the piston for [1]
					work done by gas equals decrease in internal energy for [2]
			Total Q9	12	

Q	Question		Expected Answers	Marks	Additional Guidance
10	(a)	(i)	pulses of light/microwaves from Earth reflect from the Moon;	1	accept EM waves instead of light / microwaves (not IR, UV) look for pulses of radiation from Earth to Moon and back to Earth
			speed of light × half the pulse-echo time = distance (owtte);	1	look for how to calculate the distance for [1] accept a formula e.g. $d = ct/2$
			assumes: speed of light same all the way through the journey / same time for both halves of journey	1	accept effect of atmosphere is negligible (on speed of EM wave)
					QWC candidates who cannot spell correctly cannot earn more than [2]
		(ii)	$t = 27 \times 24 \times 3600 = 2.3 \times 10^6 \text{ s}$	1	look for correct method of conversion to seconds for [1]
			$v = \frac{2\pi r}{t} = \frac{2\pi \times 3.8 \times 10^8}{2.3 \times 10^6} = 1.02 \times 10^3 \mathrm{m s^{-1}}$	1	accept ecf from incorrect <i>t</i> for [1]
			$t = 2.3 \times 10^{\circ}$		e.g. 27 s gives 8.8×10 ⁷ m s ⁻¹ for [1]
					27×24 s gives 3.7×10^6 m s ⁻¹ for [1]
					27× 24 ×60 s gives 6.1×10 ⁴ m s ⁻¹ [1]
					accept correct reverse calculation for [2]
					e.g. $v = 1000 \text{ m s}^{-1}$ gives $2.4 \times 10^6 \text{ s}$ [1] which is 27.6 days [1]
	(b)	(i)		1	arrow from centre of Moon towards centre of Earth for [1]
					accept arrow pushing Moon towards centre of Earth
					look for extrapolated arrow passing through Earth.
		(ii)	acceleration / force is at right angles to	1	look for complete argument to award [1]
			displacement / velocity so no work is done		
		(iii)	$F = \frac{mv^2}{mv^2} = \frac{GMm}{r^2}$	1	use of this rule for [1]
			$r r^2$	1	
			$v = 1000 \text{ m s}^{-1}$ gives 5.7×10 ²⁴ kg		
			$v = 1023 \text{ m s}^{-1}$ gives 5.9×10 ²⁴ kg		
			Total Q10	9	

Question		on	Expected Answers	Marks	Additional Guidance
11	(a)	(i)	(model has each atom at centre of a cube of side d , so) volume occupied by a single atom is d^3	1	accept volume of an atom/particle is <i>d</i> ³
		(ii)	$d = \sqrt[3]{\frac{m}{\rho}}$	1	correct rearrangement for density with symbols or numbers for [1]
			$d = 2.3 \times 10^{-10} \text{ m}$	1	award [1] for correct calculation of $a^3 = 1.2 \times 10^{-29} \text{ m}^3$
	(b)	(i)	full value <i>d</i> from (ii) gives 2.312×10 ⁻¹⁰ × 1.3×10 ¹¹ = 30.1 N m ⁻¹	1	$d = 2.31 \times 10^{-10}$ m gives 30.0 N m ⁻¹ for [1] $d = 2.3 \times 10^{-10}$ m gives 29.9 N m ⁻¹ for [1] $d = 2 \times 10^{-10}$ m gives 26 N m ⁻¹ for [1] accept correct reverse calculation for [1] e.g. $k = 30$ N m ⁻¹ , $d = 2.3 \times 10^{-10}$ m gives $E = 1.30 \times 10^{11}$ Pa
		(ii)	k/d is (N m ⁻¹) (m ⁻¹) = N m ⁻²	1	look for correct units for k and d combined correctly to give N m ⁻²
	(c)	(i)		1	accept any constant amplitude, look for correct peaks and zero- crossing points across whole timespan, cosine curve. at least one of the curves for (i) or (ii) must be clearly labelled for marks to be awarded.
		(ii)		1	any constant amplitude, must be positive, and correct pattern across timespan ecf incorrect phase of velocity-time graph - peak energy to coincide with peak speed accept full-wave rectified cosine wave
	(d)		$A = 0.15 \times 2.3 \times 10^{-10} = 3.5 \times 10^{-11} \text{ m};$ $E = kA^2 / 2 = 1.8 \times 10^{-20} \text{ J};$ $T_{\text{m}} = E/k = 1.8 \times 10^{-20} / 1.4 \times 10^{-23} = 1280 \text{ K}$	1 1 1	2×10^{-10} m gives 3×10^{-11} m for [1] 2×10^{-10} m gives 1.4×10^{-20} J for [1] 2×10^{-10} m gives 960 K for [1] look for calculation of amplitude for [1], energy for [1] and T_m for [1] with ecf from one step to the next.
			Total Q11	10	

Q	uesti	on	Expected Answers	Marks	Additional Guidance
12	(a)	(i)	$E_{\rm T} = 1.3 \times 10^{-20} \text{ J};$ $f = E/h = 2.0 \times 10^{13} \text{ Hz};$ $\lambda = c/f = 1.47 \times 10^{-5} \text{ m}$	1 1 1	correct answer for [3] allow ecf from incorrect <i>E</i> $E = kT$ gives 2.36×10^{-5} m for [2] allow ecf from incorrect <i>f</i> accept 1.5×10^{-5} m
		(ii)	infrared	1	accept any correct and unambiguous response allow ecf from incorrect (i) X-rays below 1×10^{-9} m ultraviolet from 1×10^{-9} m to 4×10^{-7} m visible from 4×10^{-7} m to 8×10^{-7} m infrared from 8×10^{-7} m to 1×10^{-3} m microwaves above 1×10^{-3} m
	(b)		current is determined by rate at which electrons leave the surface owtte; probability that an electron will (have energy ε to) be able to leave the surface (at temperature <i>T</i>) is proportional to BF ($e^{-\varepsilon_{kT}}$);	1	accept current is electrons per second owtte for [1] accept proportion of electrons able to leave the surface
	(c)	(i)	InI = InC - ε/kT	1	look for this formula in the response accept log _e but not log
		(ii)	gradient = $5.0 \times 10^4 \pm 0.5 \times 10^4$ ϵ = $7.0 \times 10^{-19} \pm 0.7 \times 10^{-19}$ J	1 1	allow ecf only from incorrect gradient calculation for [1] e.g. ε = 7.0×10 ⁻²² J for [1] watch out for one point from graph instead of gradient for [0]
			Total Q12	9	