Write your name here Surname		Other name	25
Pearson Edexcel International GCSE	Centre Number		Candidate Number
Chemistr Unit: 4CH0 Paper: 2CR	y		
Tuesday 9 June 2015 – Aft Time: 1 hour	ternoon		Paper Reference 4CH0/2CR
You must have: Ruler, calculator			Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

	0	Helium 2 22	20 Neon 10	40 Argon 18	84 Krypton 36	31 00 54	222 Rn B6			
	_	Υ Ξ <u>Ξ</u>				÷ X ³				
	7		19 Fluorine 9	35.5 CI Chlorine 17	80 Bromine 35	127 lodine 53	210 At Astatine 85			
	9		16 Oxygen 8	32 Sultur 16	79 Selenium 34	128 Te Tellurium 52	210 Polonium 84			
	5		14 N Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83			
	4		12 Carbon 6	28 Silicon	73 Germanium 32	t Suntaine	207 Pb 82 82			
	n		5 Baron 5	27 Aluminium 13			204 TI Thallium 81			
					65 Zinc 30	112 Cdd AB	201 Hg Mercury 80			
TABLE					63.5 Copper 29	108 Ag Silver	197 Au Gold 79			
JIODIC					28 Nickel Nickel	106 Pd Palladium 46	195 Pt Platinum 78			
THE PERIODIC TABLE					59 Cobalt 27	103 Rhodium 45	192 Ir T7			
Ē					26 Te 55	2	190 Osmium 76		цс Ц	Ĕġ
	Group	Hydrogen H			55 Mn Manganese 25		186 Re Rhenium 75		Key Relative atomic mass Symbol	Name Atomic number
					52 Chromium 24	96 Mo Molybdenum 42	184 V 74			
					51 Vanadium 23	93 Niobium 41	181 Tantalum 73			
					48 Titanium 22	91 Zrconium 40	179 Hafnium 72			
					45 Scandium 21	Yttrium 39	139 La Lanthanur 57	227 AC 89 89		
	N		9 Beryllium 4	24 Mg 12	40 Catcium 20		137 Ba Banium 56			
	-		- ⁷ Lithium 3	23 Sodium 11	39 K Potassium 19	86 Rubidium 37	133 Cs S5	223 Fr 87 87		
		Period	N	ო	4	Q	Q	~		

P 4 4 2 7 0 A 0 2 2 0

2

BLANK PAGE

Answer ALL questions.

- 1 An atom of an element has an atomic number of 6 and a mass number of 12.
 - (a) Using this information, complete the table to show the numbers of protons, neutrons and electrons in one atom of this element.

(2)

number of protons	
number of neutrons	
number of electrons	

(b) The Periodic Table shows the positions of five elements, J, Q, T, X and Z.

The letters do **not** represent the symbols for the elements.

	5 Turn over
(Total for Question 1 = 8 m	arks)
similarity	
(iv) State one similarity and one difference between the electronic configurations of atoms of J and T.	(2)
(iii) What is the electronic configuration of an atom of Q?	(1)

2	Ethene is an unsaturated hydrocarbon.			
	(a) (i) The molecular formula of ethene is		(1)	
	\boxtimes	Α	CH_{4}	(1)
	\times	В	C_2H_6	
	\times	С	C ₂ H ₄	
	\mathbf{X}	D	C ₃ H ₆	
	(ii)	Eth	nene is bubbled into bromine water until there is no further change.	
		Wł	nat is the appearance of the solution formed?	
	\mathbf{X}	A	brown	(1)
	\mathbf{X}	В	colourless	
	\times	С	purple	
	\times	D	red	
	(iii)	Etł	nene can be formed from ethanol.	
		Th	is type of reaction is called	
	\times	A	dehydration	(1)
	\times	В	oxidation	
	\times	С	reduction	
	\times	D	substitution	

3 Magnesium reacts with oxygen in the air to form magnesium oxide.

 $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$

The apparatus in the diagram can be used to investigate the decrease in the volume of gas when magnesium burns in air.

The stopper is removed and the magnesium is lit. The stopper is then quickly replaced.

After the flame goes out there is some magnesium left in the basin.

After the apparatus has cooled to its original temperature, the water level in the bell jar is higher than shown in the diagram.

(a) What is the colour of the flame produced when the magnesium burns?

(1)

(b) What is the colour of the solid produced when the magnesium burns?

(1)

(c) The volume of air in the bell jar at the start of the experiment is 1000 cm ³ .	
Calculate the volume of gas you would expect to remain in the bell jar at the end of the experiment. Assume all the oxygen in the air is used up.	(2)
volume of gas remaining =	cm ³
(d) In another experiment, the mass of magnesium that burned was 0.12 g.	
Calculate the maximum mass of magnesium oxide that could be formed in this experiment.	
in this experiment.	(2)
mass of magnesium oxide formed =	g
mass of magnesium oxide formed =	

(iii) A sample of the solution phenolphthalein indicat Explain why the phenol		(2)
(b) The table shows two metho Complete the table by givir	ds of testing for chlorine. ng the observation made in each test.	(2)
Test	Observation	
add damp blue litmus paper		
bubble chlorine into a solution of potassium iodide		
(c) (i) State why chlorine is sor	netimes added to water supplies.	(1)
(ii) Chlorine is used to man	ufacture hydrogen chloride gas, HCl(g).	
Write a chemical equation hydrogen and chlorine.	on to show the formation of hydrogen chloride from	(1)
(iii) How is hydrogen chloric	le gas converted into hydrochloric acid?	(1)
	(Total for Question 4 = 9 ma	arks) 11

 A teacher investigates the temperature changes that occur when sodium hydroxide solution is added to dilute hydrochloric acid. This is the method she uses. 	
This is the method she uses.	
 place some of the acid in a glass beaker and measure its temperature 	
 add a known volume of sodium hydroxide solution 	
stir the mixture and record the highest temperature reached	
repeat the experiment with different volumes of sodium hydroxide solution	
(a) State two factors that the teacher must keep constant to make this	
a valid investigation (a fair test). (2)	
1	
2	
(b) Explain how the use of a polystyrene cup, in place of a glass beaker, will affect the	
accuracy of the results. (2)	

P 4 4 2 7 0 A 0 1 2 2 0

(c) (i) The diagram shows the thermometer readings for one of the experiments.

Record the temperatures and calculate the temperature change.

final temperature of mixture	°C
initial temperature of acid	°C
temperature change	°C

(ii) State how the temperature change shows whether the reaction between sodium hydroxide and hydrochloric acid is exothermic or endothermic.

(1)

(3)

6	This question is about the reactions of compounds of antimony and phosphorus.
	(a) Antimony (Sb) can be obtained from its oxide (Sb_2O_4) by heating it with carbon.
	The equation for this reaction is
	$Sb_2O_4(s) + 4C(s) \rightarrow 2Sb(s) + 4CO(g)$
	(i) Give the name of the gas produced in this reaction.
	(1)
	(ii) State why this gas is poisonous to humans. (1)
	(b) Phosphorus sulfide (P_4S_3) is one of the reactants used in match heads.
	When a match is struck, energy is transferred to the reactants in the match head, starting a reaction.
	(i) Balance the equation that represents this reaction. (2)
	$6KCIO_3(s) \ + \ \dots \\ SO_2(g) \ + \ \dots \\ P_4O_{10}(s) \ + \ \dots \\ F_4O_{10}(s) \ + \ \dots \$
	(ii) What term is used to describe the energy required to start a reaction? (1)
	(Total for Question 6 = 5 marks)

- 7 Bromine and iodine are halogens.
 - (a) Complete the table by giving the colour and physical state of each of these halogens at room temperature.

(2)

Halogen	Colour	Physical state
bromine	red-brown	
iodine		solid

(b) Bromine reacts with phosphorus to form the covalent compound phosphorus tribromide.

Draw a dot and cross diagram to show the outer electrons in a molecule of phosphorus tribromide.

Br P Br

Br

(c) Phosphorus tribromide reacts with water to form a mixture of two acids, HBr and H_3PO_3 Write a chemical equation for this reaction.

(2)

(2)

(Total for Question 7 = 6 marks)

BLANK PAGE

8 Nickel is an important metal.

(a) Three of the stages in the extraction of nickel from its ore are

stage 1 nickel(II) oxide is reduced by heating with H₂ to produce impure nickel

 $NiO(s) \ + \ H_2(g) \ \rightarrow \ Ni(s) \ + \ H_2O(g)$

stage 2 the impure nickel is reacted with CO

 $Ni(s) + 4CO(g) \rightleftharpoons Ni(CO)_4(g)$

stage 3 Ni(CO)₄ is decomposed by heating to produce pure nickel

 $\text{Ni(CO)}_4(g) \rightarrow \text{Ni(s)} + 4\text{CO}(g)$

(i) State why the reaction in stage 1 is described as reduction.

(1)

(ii) Suggest why a low temperature produces a high yield of $\mathrm{Ni(CO)}_4$ in stage 2.

(b) Nickel has a melting point of 1455 °C and is a good conductor of electricity.	
(i) Draw a labelled diagram to show the arrangement of the particles in nickel.	(3)
(ii) Evolution in terms of its structures why nicked is realleships and is a stand	
 (ii) Explain, in terms of its structure, why nickel is malleable and is a good conductor of electricity. 	(4)
(Total for Question 8 = 10 n	narks)
TOTAL FOR PAPER = 60 M	
I U IAL FOR FAPER = 00 M	

BLANK PAGE

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

