

Chemistry B (Salters)

Advanced Subsidiary GCE

Unit F331: Chemistry for Life

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations

Annotation	Meaning
/	alternative and acceptable answers for the same marking point
✓	separates marking points
not	answers which are not worthy of credit and which will CON a correct answer
ignore	statements which are irrelevant and will NOT 'CON' a correct answer
allow	answers that can be accepted
()	words which are not essential to gain credit
	underlined words must be present in answer to score a mark
ecf	error carried forward
AW	alternative wording (replaces the old 'or words to that effect')
ora	or reverse argument

Annotations used in scoris:

Annotation	Meaning
✓	correct response
×	incorrect response
BOD	benefit of the doubt
NBOD	benefit of the doubt <u>not</u> given
ECF	error carried forward
^	information omitted
I	Ignore
R	Reject

Q	uesti	on	Answer	Marks	Guidance
1	(a)	(i)	measures tendency to auto-ignite/pre-ignite/knock/pink ✓ More efficient combustion OR reduces risk of/stops damage to engine OR higher octane number means less knocking/pinking/autoignition and etc ✓	2	Need to see likelihood of autoignition Ignore references to two sparks/explosions ALLOW improves engine performance ALLOW higher octane number means less knocking ALLOW knocking less likely but NOT <u>no</u> knocking NB prevents knocking does not CON another correct answer
		(ii)	cyclic / cycloalkane / cycloalkene / ring / arene / branched alk e ne ✓	1	ALLOW aromatic/benzene NOT branched alk a ne
	(b)	(i)	heterogeneous – catalyst and reactant(s)/hydrocarbons in different phase/state ✓ catalyst <u>speeds up reaction</u> by providing a <u>route/pathway/mechanism</u> of lower activation enthalpy/energy OR speeds up a reaction but can be recovered unchanged <u>at the</u> <u>end</u> /can be regenerated/is not used up ✓	2	 ALLOW catalyst solid, reactants gases/liquids DO NOT ALLOW 'substance instead of reactants' DO NOT ALLOW 'chemical state' DO NOT ALLOW 'speeds up reaction' without qualification IGNORE reduces activation energy NOT 'not involved' NOT 'not changed' on own or remaining unchanged
		(ii)	Poison/lead (very) <u>strongly/irreversibly</u> adsorbed OR won't come off OR stays on ✓ reactions cannot happen/prevents reactants getting to surface/blocks surface/other molecules can't attach ✓	2	DO NOT ALLOW other suggested poisons eg S DO NOT ALLOW absorbed Vague comments e.g. 'catalyst prevented from working' do not score Mark independently
		(iii)	only produces water (on combustion/burning) OR does not produce CO₂ / CO / no particulates / C / SO₂ ✓	1	NOT just a general comment about pollution/harmful gases CON references to NO _x DO NOT ALLOW less/little pollutants IGNORE references to renewable/plentiful/energy density

Quest	ion	Answer	Marks	Guidance
	(iv)	energy in / endothermic to break bonds ✓ energy released / given out / exothermic when bonds form ✓ less energy given out than taken in ✓	3	statement 'more energy needed to break bonds than make' only scores one (first) mark Has to be bond formation NOT product formation NOT ecf on first two statements References to <u>fewer/more</u> bonds CON s final mark
(C)		First marking point: idea of splitting or breaking (larger) hydrocarbon/molecule break/split AW ✓ Remaining two marking points for possible types of molecules formed, but <u>to score both points smaller/shorter</u> <u>must be mentioned at least once</u> Any <u>two</u> from: ✓ ✓ smaller/shorter alkane/saturated (compound) alkene/alkyene/unsaturated (compound) cycloalkane	3	Reference to between molecules is a CON on first mark IGNORE references to branching DO NOT ALLOW arene/aromatic molecule ALLOW references to C=C etc. DO NOT ALLOW simply (shorter) hydrocarbon/molecule
		Total	14	

Q	Question			An	swer		Marks	Guidance
2	(a)	(i)	Isotope	Number of protons	Number of neutrons	Number of electrons	1	All must be correct
			Helium-3	2	1	2		
			Helium-4	2	2	2		
						1	✓	
		(ii)		✓ number (in dau ron converted to		goes up (by	2	 DO NOT ALLOW no change in mass number (of daughter product) (this would be the case with just gamma emission) If alpha decay score 0 DO NOT ALLOW no change to A_r DO NOT ALLOW un-annotated equation as explanation IGNORE references to electrons
	(b)	(i)	$^{1}_{1}H + ^{2}_{1}H \rightarrow ^{3}_{2}$	He ✓			1	<u>Any</u> of numbers on right of symbol scores zero IGNORE any reference (symbol) to gamma decay ALLOW '=' instead of ' \rightarrow '
		(ii)	Overcome rep	oulsion 🗸			2	Mark separately
			between (pos to join the two	itively charged) o nuclei ✓	<u>nuclei</u> OR			IGNORE references to electrons NOT ions
	(c)	(i)	black/dark line bright/coloure	es/bands ✓ d/solar/ <u>visible</u> s	pectrum backę	ground ✓	2	IGNORE references to lines getting closer Description of emission spectra scores zero i.e. no ecf If word spectrum is used it must be qualified
		(ii)		t/energy absorb energy levels)		<u>ctron(s)</u> to move	9 3	arrow up on a diagram scores first marking point ALLOW shells
			energy levels	unique/specific	/different (to el	ement) 🗸		ALLOW 'each element has its own/different levels'
			energy absorb OR (Δ) E = h	ped related to fr f OR ΔE = hv ✓	equency (of lin	e produced)		

Question	Answer	Marks	Guidance
(d)	sample ionised ✓	5	ALLOW 'ions are made', negative ions CON
	all ions are accelerated (in electric field/plates) \checkmark		DO NOT ALLOW 'accelerated by magnetic/ electromagnetic field' for this mark CON
	to the <u>same kinetic energy</u> ✓		This statement scores 2nd and 3rd marking points i.e. a statement 'ions are given the <u>same kinetic energy</u> ' scores both 2nd and 3rd marking points SPG (kinetic) must be spelt correctly to score this marking point, but not a separate mark; if not scored X on pencil
	move into drift/flight region ✓		At correct point in sequence, eg ionised > drift region scores this mark BUT ionised>drift region>accelerated does not score
	heavier ions/isotopes move more slowly (across to detector) (ora) AW \checkmark		IGNORE references to molecules/atoms for last marking point IGNORE references to how detector measures abundance References to larger/smaller ions should be ignored
	Total	16	

Q	uesti	on	Answer	Marks	Guidance	
3	(a)		Any one of: increases octane number/rating less knocking/auto ignition/pre-ignition reduces CO ✓		ALLOW combustion more complete / less incomplete ALLOW complete combustion ALLOW 'less oxygen to burn' / 'completely combust' / no CO	
	(b)	(i)	C ₈ H ₁₆ ✓	1	Accept H ₁₆ C ₈ NOT "h"	
		(ii)	M_r of $C_8H_{16} = 112 \checkmark$ Moles in one kg = 1000/112 = 8.93 kJ per kg = 8.93 x 5300 = 47329 ✓ (depending on rounding) two sf's (47000/4.7 x 10 ⁴) ✓ correct answer is 3 marks	3	 ecf on wrong formula in (i) ecf on wrong M_r above ALLOW sig fig mark from any correct calculation NB a different approach to solving the problem is: energy per gram = 5300/112 then kJ per kg = 5300/112 x 1000 IGNORE sign of answer 	
	(c)	(i)	(molecules with) same molecular formula/same number and type of atoms but different structural formulae/arrangement of atoms AW ✓	1	DO NOT ALLOW 'different shape'	
		(ii)	Bond angle between 115–125 ✓ 3 areas of <u>electron</u> density/sets or groups (bonding) <u>electrons</u> ✓ electrons <u>repel</u> ✓	4	IGNORE references to central carbon/shape/angle 3 bonding pairs/areas CON's the second mark NOT 'as much as possible' unless qualified with minimise etc. NOT 'bonds repel' but 'bonds made of electrons and repel is fine' NOT atoms repel	
			as far as possible/minimise electron repulsion \checkmark		As far as possible to minimise (electron) repulsion will score 3^{rd} and 4^{th} mark	

Quest	ion	Answer	Marks	Guidance
	(iii)	smaller OR a given angle of range 104–112 ✓ because 4/more areas (repel and gives 109.5 ⁰) ✓	2	No ecf from last question Do not penalise failure to mention 'of electrons' <i>Mark separately</i>
(d)	(i)	200 x 4.18 x 25 = 20900 ✓	1	ALLOW 21000
	(ii)	mass of <u>fuel/hydrocarbon/it</u> (burnt) ✓	1	ALLOW volume <u>and</u> density Assume 'it' refers to the fuel DO NOT ALLOW moles/amount
	(iii)	Same number of bonds broken and formed/made ✓ Same type of bonds broken and formed/made ✓	2	DO NOT ALLOW similar ALLOW 'same bonds broken and formed' for this mark same number and type of bonds broken scores 1 same number and type of bonds formed scores 1
	(iv)	One of: incomplete combustion evaporation of fuel/loss of fuel vapour non-standard conditions ✓	1	IGNORE heat loss to container NOT average bond enthalpies
		Total	17	

Q	Question		Answer	Marks	Guidance
4	(a)	(i)	i) $4Ce + 3O_2 \rightarrow 2Ce_2O_3 \checkmark$	1	ALLOW 2:11/2:1 or multiples IGNORE state symbols NOT 2Ce ₂
		(ii)	moles Ce= $81.4 \div 140.1 = 0.58$ moles O= $18.6 \div 16.0 = 1.16 \checkmark$ gives CeO ₂ \checkmark	2	ALLOW one mark for a correct whole number ratio based on wrong calculation e.g. using atomic number (this would give Ce ₃ O ₅) CeO ₂ alone scores 1 mark – " show your working " Not just any wrong calculation
	(b)	(i)	covalent network OR giant covalent (molecule) ✓	1	ALLOW covalent lattice
		(ii)	Ċ. Š. Č. Š. Č. Š. Č.	1	All outer electrons must be shown Bonding electrons can be in any order or horizontal 'Pairing' not essential for lone pairs IGNORE shape Check for dot cross conformity
		(iii)	no double bonds in SiO₂ OR silicon forms four/more than two/single bonds to oxygen ✓	1	 NOT carbon dioxide contains a double bond Look out for CON in any structure suggested e.g. lone pairs on Si e.g. no lone pairs on oxygen e.g. more lone pairs on each atom ALLOW each oxygen bonded to two Si atoms

Question	Answer	Marks	Guidance
(c)	O O O O O O O O O Sea of /delocalised/ electrons ✓ O	3	 maximum 2 marks if no diagram drawn protons/nuclei/positive metal atoms/particles CONS first mp IGNORE free/pool/cloud/moving of electrons. ALLOW ring around all the ions labelled 'delocalised/sea of electrons' CON if first two marking points are labelled to incorrect parts of diagram If metal given ignore type 3rd marking point from diagram (need not have label) structure = at least two rows; need not be 'close packed', circles may touch
(d) (i)	 First mark for idea that gaps left because without them some known elements did not fit in groups (without the gap) properties of known elements did not fit ✓ Second mark for new elements discovered which did fit in gaps (with appropriate props) element/scandium discovered fitting in gap (with appropriate properties) ✓ 	2	 ALLOW to place elements with similar properties in the correct column/group ALLOW 'he suggested there were elements yet to be discovered' DO NOT ALLOW 'elements were discovered' on own

G	Question		Answer		Guidance	
		(ii)	atomic/proton number/number of protons \checkmark	1	DO NOT ALLOW electronic structure	
		(iii)	electron structure/configuration/arrangement ✓	1	ALLOW number of electrons in outer shell ALLOW number of electron shells / electron shells IGNORE any references to protons / energy shells ALLOW reference to electron shells e.g. number e.g. number of shells is period number	
			Tot	al 13		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

