

GCE

Physics B

H557/03: Practical skills in physics

Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
TE	Transcription error
NBOD	Benefit of doubt not given
POT	Power of 10 error
^	Omission mark
SF	Error in number of significant figures
	Correct response
?	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Meaning
alternative and acceptable answers for the same marking point
Answers which are not worthy of credit
Answers which are not worthy of credit
Statements which are irrelevant
Answers that can be accepted
Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
Error carried forward
Alternative wording
Or reverse argument

Note about significant figures:

If the data given in a question is to 2 sf, then allow to 2 or <u>more</u> significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the <u>entire</u> paper. Any exception to this rule will be mentioned in the Guidance.

Q	uest	ion		Answer		Marks	Guidance	
1	а	i	(n = sin i ÷sin r = (n =) 1.7(2)	sin 40÷sin 22 1 1			If radians are used answer = -84 (award 1 mark for correct method even is working is missing). Answer correct to 2sf. Don't penalise 1.71. Raw answer of 1.7 gains both marks.	
		ii	angle	maximum value / °	minimum value / °			
			angle of incidence, i	44	36	1	All 4 values needed for the mark.	
			angle of refraction, r	26	18		All 4 values needed for the mark.	
			Find max value of n = sin 44÷sin 18 (= 2.248) AND/OR Find min value of n = sin 36÷sin 26 (= 1.3408)		1	Allow ecf of incorrect max and/or min values of angles from table.		
			OR Uncertainty = 1.7 OR	25 - 1.72 = 0.53 [max 72 - 1.34 = 0.38 [1.7 - (2.25 - 1.34) = 0.46 or (x - min)]	min value]	1	ALLOW correct use of the their max and/or min values and value of n calculated in part (i). eg. sin 44÷sin 26 = 1.6 and sin 36÷sin 18 = 1.9, so uncertainty = 0.2 or 0.1. ALLOW answers to 1sf. Do not credit a raw answer of 0.5, which can be	
							achieved by adding percentage uncertainties of angle i and angle r – an incorrect method.	

Question total 11

Q	uesti	ion	Answer	Marks	Guidance
2	а	i	Resolving forces horizontally gives $F = T \sin \theta = T \left(\frac{x}{L}\right)$ Displacement from equilibrium position / x, is in opposite direction to F, hence negative sign.	1 1	ALLOW $F = T \tan \theta = T \left(\frac{x}{L}\right)$ IGNORE reference to W (as this is resolving horizontally)
		ii	Equating the two expressions for acceleration, $-4\pi^2 f^2 x = -g \frac{x}{L}$ and cancelling x and negative sign to give $4\pi^2 f^2 = \frac{g}{L}$ (Substituting $T = \frac{1}{f}$)to give $\frac{4\pi^2}{T^2} = \frac{g}{L}$, and rearrangement (to give $T^2 = \frac{4\pi^2 L}{g}$)	1	Any subject for the simplified equation, omitting one or more negative signs will lose the first marking point. Allow alternative methods, eg substitute $x = -\frac{aL}{g}$ into $a = -4\pi^2 f^2 x$.
	b	i	Reaction time or error in starting and/or stopping watch. Longer time (to measure) gives smaller percentage/relative/fractional uncertainty (due to reaction time) (or vice versa)	1 1	Not just human error or random error. ALLOW uncertainty reduced to $\frac{1}{10}$ or 10% (of previous value)
		ii	1.613 2.085 2.375	1	All values calculated correctly to 4 SF:

	iii	 x-axis suitably scaled and labelled as L (ignore units), using at least half of the printed graph grid, minimum distance between scale marking is 3 large squares. y-axis suitably scaled and labelled as T² (ignore units), using at least half of the printed graph grid, minimum distance between scale marking is 3 large squares. Points plotted correctly (to within half a small square) Acceptable straight line of best fit drawn. Line must not have kinks or be too thick or hairy and must be long enough to cover all the plotted points. 	1 1 1	Do not allow awkward scales including those going up in multiples of 3. Smallest acceptable x-axis scale is 1 large square:0.05m. Put tick/cross by x-axis. Smallest acceptable y-axis scale is 1 large square:0.2s ² . Put tick/cross by y-axis. Do not award for blobs (points with diameter > ½ small square. Put tick/cross by the third plot. Best line should be just to the left of the top plot and almost through the bottom plot. If all 4 plots are correct the line should not pass through the origin. Put tick/cross near top of line.
	iv	Calculation of gradient of line using co-ordinates of 2 points on the drawn line at least half the length of the drawn line apart. Evaluation of g from calculated gradient value, $g = \frac{4\pi^2}{gradient}$.	1	Gradient = $\frac{dy}{dx}$, and denominator should be at least 0.15m. Using data points from the table is only acceptable if the points are on the drawn line (by half a small square) A good line in part (iii) will give range 9 < g < 11 m s ⁻² A raw value for g (eg 9.81) scores zero. Working must
C		ANY 2 from: Same (absolute) uncertainty/resolution/precision. Time period for shorter pendulums is less (hence percentage uncertainty in time is greater) Uncertainty in time is more significant than uncertainty in length. Uncertainty in time is increased because T ² .	2	be shown. ALLOW same instrument used to measure
		Question total	15	

Question	Answer	Marks	Guidance
3 a	 Level 3 (5-6 marks) ✓✓ Detailed description of procedure including workable circuit diagram and relevant graphical methods and discussion of sources of uncertainty. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) ✓✓ Workable circuit with description of procedure to determine conductivity and at least one source of uncertainty mentioned. There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) ✓✓ Limited description of procedure and/or at least one uncertainty mentioned. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit. 	6	Indicative scientific points may include:Procedure:• Workable circuit (diagram) to enable resistance of wire to be calculated.• Measure length of wire (with metre rule).• Find cross-section area of wire: • measure diameter of wire (with micrometer); • in several planes and/or several places; • $A = \frac{\pi d^2}{4}$.• Change length of wire (and repeat).• Find $R = \frac{v}{t}$; • use $\rho = RA+L$ and $\sigma = 1 \div \rho$ • find R for different lengths of wire; • plot graphs of R against L; • $\rho = gradient \times A$; • $\sigma = 1 \div (gradient x A);$ • (positive) intercept of graph due to contact resistance.• Find $G = \frac{i}{v}$; • use $\sigma = GL+A$ • for different lengths of wire; • plot graphs of G against 1/L; • $\sigma = (gradient x A)$.Uncertainties: • ± 0.01 mm for micrometer readings• Relative/percentage uncertainty in diameter doubled for area.• Wire may not have circular cross section.• Wire may have kinks.• Absolute uncertainty in length is ± 1 mm to ± 5 mm• Uncertainty in voltmeter and ammeter depend on resolution of digital meters or size of division on analogue meters.• Contact resistance• Wire may neat up whilst current flows through it or circuit ensures same current through all lengths of wire.• Higher temperature wire will have a lower conductivity (or vice versa).

b	i	Use of $\frac{I}{V} = \frac{\sigma A}{L}$ I = (2.1 × 10 ⁶)(0.166 × 10 ⁻⁶)(2.0)÷0.330 I = 2.1 A Alternative method: Either G = σA ÷L = 1.06Ω ⁻¹ or R = L÷ σA = 0.95 Ω ✓ I = GV = 1.05 × 2 OR I = V ÷ R = 2 ÷ 0.95 ✓ I = 2.1 A ✓	1 1 1	POT error in area – either incorrect or missing will not gain this last mark.
b	ii	v = I/nAq = $2.1/(10^{28})(0.166 \times 10^{-6})(1.6 \times 10^{-19})$ v = 8×10^{-3} m s ⁻¹ [this is only an estimate so 1sf is acceptable]	1	ALLOW ecf of incorrect value for current calculated in part (i), $[v = current \div 265.6]$ Incorrect POT for area should cancel out with incorrect POT in current from part (i).
b	111	Positive ions/atoms have more <u>kinetic</u> energy More energetic vibrations obstruct path of electrons more/electrons make more (frequent) collisions (So) mean drift velocity decreases	1 1 1	IGNORE electrons have more KE. IGNORE reference to thermal expansion of wire and resistance of wire.
		Question total	13	

Q	Question		Answer	Marks	Guidance
4	а	i	particles/molecules have negligible volume (compared to that of the container)	1	ALLOW atoms
			elastic collisions with container/walls/surfaces OR (all) collisions are elastic.	1	ALLOW no loss of KE instead of elastic ALLOW atoms
			no interactions between particles/molecules (except during collisions)	1	
		ii	$\frac{3}{2}kT = \frac{1}{2}m\overline{c^2}$ (= mean kinetic energy)	1	IGNORE v ² (if the first step is $\frac{3}{2}kT = \frac{1}{2}mv^2 = \frac{1}{2}m\overline{c^2}$
					award the first mark)
			Use of $pV = \frac{1}{3}Nm\overline{c^2}$ clearly leading to $p = \frac{NkT}{V}$ (any subject)	1	
			As N and V (and k) are constants, (so $p \propto T$)	1	NOT c is a constant
	b		Rearranging $\frac{3}{2}kT = \frac{1}{2}mc^{\overline{2}}$ to give $\overline{c^2} = \frac{3kT}{m}$ or $\sqrt{\overline{c^2}} = \sqrt{\frac{3kT}{m}}$	1	If k is used with molar mass the $\sqrt{\overline{c^2}} = 5.5 \times 10^{-10}$ or $\overline{c^2} = 3.0 \times 10^{-19}$.
			Substituting correct values into equation (ignoring POT errors):		If R is used with molecular mass the answer $\sqrt{\overline{c^2}} = 3.3 \times 10^{-12}$ or $\overline{c^2} = 1.1 \times 10^{-23}$.
			EITHER $\sqrt{\overline{c^2}} = \sqrt{\frac{3kT}{m}}$ where m = 0.0399 ÷ 6.02×10 ²³ = 6.63 ×10 ⁻²⁶ kg	1	Any of these values (with or without a POT error) or 7.7×10^{-22} or 5.05×10^{-43} on answer line will gain the first marking point.
			OR $\sqrt{\overline{c^2}} = \sqrt{\frac{3RT}{m}}$, using R = 8.31 and m = 0.0399		Final answer of ($\overline{c^2}$ =)1.8×10 ⁵ for first two marking points.
			root mean square speed = 430 m s ⁻¹	1	Note : Correct bald answer gains three marks. First marking point can be implicit. A POT error will lose a mark.
	С	i	Two from:	1 × 2	IGNORE find mean, percentage uncertainty.
			 Record the temperature will all the thermometers (in the water bath) 		
			• Uncertainty = \pm range \div 2 or \pm spread.		ALLOW uncertainty = max value – mean, OR uncertainty
			 Ignore/identify anomalous values or outliers as values 		= mean – min value. ALLOW outliers identified as being clearly different from
			 Ignore/identity anomalous values of outliers as values greater than x2 spread from mean 		the other readings.
					NOT just ignore outliers.

C	ii1	Worst fit line has steeper gradient and passes through all the uncertainty bars.	1	In particular, watch for the top of the fourth error bar and the bottom of the first within half a small square in vertical direction. Put a tick/cross near the 4 th error bar. Line from (250, 68) to (370, 112) to nearest half a small square
	li2	Gradient calculated $\left(\frac{dy}{dx} \text{ or}\right) \frac{dP}{dT} \checkmark$ dT ≥ 60 K \checkmark Coordinates of two points on the line read off to the nearest half square \checkmark EITHER:	1 1 1	All coordinates to be read off to the nearest half a small square.
		Find intercept by substituting coordinates of point on line into $P = mT + c$, using their value of gradient as m. \checkmark Substitute P=0 to find T. \checkmark OR: Calculation of the temperature drop required to reach zero pressure	1 1 (1)	e.g. (250,68) and gradient value = 0.37 68 = $0.37 \times 250 + c$; to give c = $-24.5 \checkmark$ Substitute P = 0; 0 = $0.37T - 24.5$; T = 66K No ecf for wrong value of c (unless transcription or arithmetic error). Watch for false origin read-off.
		from a stated temperature by dividing a value of pressure on the line by the gradient. Temperature at 0 Pa calculated;	(1)	 e.g taking (250,68) as a point on their worst fit line. 68 ÷ gradient = 185 ✓ 250 - 185 = 65K ✓ IGNORE any calculation of gradient and/intercept of the
				printed line of best fit. ALLOW ecf of incorrect gradient calculated for intercept calculation. ALLOW ecf for incorrect read-offs used in subsequent calculations. [ie only penalise incorrect read-off once] If both read-offs are wrong for the gradient calculation and other of them are used again in subsequent

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.gualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2019