Oxford Cambridge and RSA

GCE

Chemistry A

Unit H432A/01: Periodic table, elements and physical chemistry Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	Guidance
1	D	1	
2	D	1	
3	C	1	ALLOW +6 in the box
4	C	1	
5	B	1	ALLOW 20 in the box
6	C	1	
7	A	1	
8	D	1	
9	C	1	
10	A	1	
11	A	1	
12	C	1	ALLOW 4.1 in the box
13	B	1	ALLOW 0.426 in the box
14	C	1	
15	B	1	
		15	

SECTION B

Question		Answer	Marks	Guidance
(c)	(i)	NH_{3} has hydrogen bonding OR PH_{3} does not have hydrogen bonding Hydrogen bonding is stronger OR More energy to overcome hydrogen bonding \checkmark	2	ORA throughout Assume that comparison is with PH_{3} DO NOT ALLOW response that implies covalent or ionic bonds breaking
	(ii)	$\mathrm{AsH}_{3} / \mathrm{As}$ has more electrons (than $\mathrm{PH}_{3} / \mathrm{P}$) \checkmark in AsH_{3}, stronger/more induced dipole-dipole interactions OR stronger/more London forces (than PH_{3}) OR more energy required to overcome induced dipole-dipole interactions \checkmark	2	ORA throughout ALLOW larger electron cloud ALLOW 'forces' OR 'bonds' for 'interactions' ALLOW instantaneous/temporary-induced dipole interactions ALLOW dispersion forces IGNORE van der Waals' / vdW IGNORE permanent dipole-dipole DO NOT ALLOW response that implies covalent or ionic bonds breaking
		Total	7	

Question		Answer	Marks	Guidance
17	(a)	$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW multiples IGNORE state symbols (even if wrong)
	(b)	Increasing size: Atomic radius increases OR more shells OR more (electron) shielding \checkmark Attraction Nuclear attraction decreases OR (outer) electron(s) experience less attraction \checkmark Ionisation energy Ionisation energy decreases OR less energy needed to remove electron(s) \checkmark	3	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED IGNORE more orbitals OR more sub-shells Alternative must refer to shells ALLOW Energy levels for shells ALLOW more electron repulsion between shells IGNORE just 'shielding' (more/greater needed) IGNORE 'nuclear shielding' IGNORE 'pull' for attraction IGNORE 'electrons less tightly held' IGNORE 'nuclear charge' for 'nuclear attraction' IGNORE 'easier to remove electron’ Energy is required ALLOW less energy to oxidise

Question	Answer	Marks	Guidance
(ii)	Equation $1 / 2 \mathrm{I}_{2}(\mathrm{~s}) \rightarrow \mathrm{I}(\mathrm{~g}) \checkmark$ state symbols required Entropy change and explanation entropy increases OR entropy change positive AND gas has more disorder/ less order/ more ways of arranging energy/ more freedom/ more random particles / more dispersal of energy \checkmark	2	DO NOT ALLOW $\mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{I}(\mathrm{g})$ DEPENDENT on $1 / 2 \mathrm{I}_{2}(\mathrm{~s}) \rightarrow \mathrm{I}(\mathrm{g})$ OR $\mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{I}(\mathrm{g})$
	Total	12	

Question			Answer	Marks	Guidance
18	(a)		```\(\Delta \boldsymbol{G}=\Delta \boldsymbol{H}-\boldsymbol{T} \Delta \boldsymbol{S}\) linked to \(y=m x+c\) (somewhere) \(\checkmark\) gradient \(=-\Delta S \checkmark\) P: \(\Delta H /\) enthalpy change \(\checkmark\) Q: (temperature) for reaction to be feasible/unfeasible OR (temperature) at which feasibility changes \(\checkmark\)```	4	Could be: $\Delta G=-\Delta S T+\Delta H$ - sign required ALLOW $\Delta S=-$ gradient ALLOW 'point of feasibility' For Feasibility: ALLOW can take place/happen OR is spontaneous IGNORE 'minimum/maximum temperature'
	(b)	(i)	(Species have) different states/phases \checkmark	1	
		(ii)	$\left(K_{p}=\right) p(\mathrm{CO}(\mathrm{g}))^{4} \checkmark$	1	Allow species without state symbols and without brackets, e.g. $p_{\mathrm{CO}^{4}}, \mathrm{ppCO}^{4}, \mathrm{PCO}^{4}, \mathrm{p}\left(\mathrm{CO}^{4}\right)$ etc. DO NOT ALLOW square brackets
		(iii)	ΔG at $25 C$ $\begin{aligned} & \Delta G=\Delta H-T \Delta S=676.4-(298 \times 0.7031) \\ & =(+) 467\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \mathbf{O R}(+) 466876\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$ Non-feasibility statement Non-feasible when $\Delta G>0$ $\mathbf{O R} \Delta G>0 \mathbf{O R} \Delta H>T \Delta S \checkmark$ Minimum temperature $\text { minimum temperature }=\begin{aligned} \frac{\Delta H}{\Delta S} & =\frac{676.4}{0.7031} \\ & =962(.0) \mathrm{K} \checkmark \end{aligned}$	3	IGNORE units ALLOW (+) 467 up to calculator value of 466.8762 correctly rounded ECF for any positive value determined in M1 ALLOW 962 up to calculator value of 962.0253165 correctly rounded

Question		Answer	Marks	Guidance
19	(a)	$\begin{aligned} & n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=2.30 \times \frac{25.0}{1000} \mathrm{OR}=0.0575(\mathrm{~mol}) \\ & \operatorname{vol} \mathrm{O}_{2}=\frac{0.0575}{2} \times 24000=690 \mathrm{~cm}^{3} \end{aligned}$ Collect in $1000 \mathrm{~cm}^{3} / 1 \mathrm{dm}^{3}$ measuring cylinder \checkmark	3	ALLOW 0.69(0) dm ${ }^{3}$ $2^{\text {nd }}$ mark subsumes $1^{\text {st }}$ mark ALLOW $1000 \mathrm{~cm}^{3} / 1 \mathrm{dm}^{3}$ syringe Needs a name of actual apparatus, not just 'container' 'measuring cylinder' without volume is insufficient DO NOT ALLOW burette For other possible apparatus, contact Team Leader ALLOW volumes from $700-1000 \mathrm{~cm}^{3}$ but should be realistic apparatus, e.g. 700, 750, 800, 850, 900, 950.
	(b)	$\text { Measure mass (loss) } \checkmark$	1	ALLOW weight for mass ALLOW take samples and titrate (remaining $\mathrm{H}_{2} \mathrm{O}_{2}$)

Question	Answer	Marks	Guidance
(c)*	Please refer to the marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5-6 marks) A comprehensive conclusion using quantitative data from the graph to correctly determine initial rate AND half lives/gradient with 1st order conclusion for $\mathrm{H}_{2} \mathrm{O}_{2}$ AND determination of k. There is a well-developed line of reasoning which is clear and logically structured. Clear working for initial rate, half life/gradient and order and k. Units mostly correct throughout. Level 2 (3-4 marks) Attempts to describe all three scientific points but explanations may be incomplete. OR Explains two scientific points thoroughly with few omissions. There is a line of reasoning with some structure and supported by some evidence. The scientific points are supported by evidence from the graph. Level 1 (1-2 marks) Reaches a simple conclusion using at least one piece of quantitative data from the graph. Attempts to calculate initial rate OR half life. There is an attempt at a logical structure with a reasoned conclusion from the evidence. 0 marks No response worthy of credit.	6	Indicative scientific points may include: Initial rate - Tangent shown on graph as line at $\mathrm{t}=0 \mathrm{~s}$ - Gradient determined in range: $1.5-2.0 \times 10^{-3}$ $\text { e.g. } \frac{2.3}{1300}=1.77 \times 10^{-3}$ - initial rate as gradient value with units: $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-}$ ${ }^{1}$, For other methods contact TL Evidence for 1st order 2 methods - 1st order clearly linked to half-life OR 2 gradients: 1. Half life - Half life shown on graph - Half life range 800-1000 s - Two 'constant' half lives $\pm 50 \mathrm{~s}$ 2. Two gradients \rightarrow two rates - 2 tangents shown on graph at c and $c / 2$ - Gradient at $c / 2$ is half gradient at c e.g. $c=2.3 \mathrm{~mol} \mathrm{dm}^{-3}, \quad$ gradient $=1.6 \times 10^{-3}$ AND $c=1.15 \mathrm{~mol} \mathrm{dm}^{-3}$, gradient $=0.8 \times 10^{-3}$ - For chosen method, conclusion: $\mathrm{H}_{2} \mathrm{O}_{2}$ is 1 st order Determination of $\boldsymbol{k} \quad 2$ methods - k clearly linked to rate OR half-life: $\begin{array}{r} k=\frac{\text { rate }}{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]} \quad \text { e.g. } k=\frac{1.6 \times 10^{-3}}{2.3} \quad=7 \times 10^{-4} \\ \text { OR } k=\frac{\ln 2}{t_{1 / 2}} \quad \text { e.g. } k=\frac{0.693}{950} \quad=7.3 \times 10^{-4} \mathrm{~s}^{-1} \end{array}$
	Total	10	

Question			Answer	Marks	Guidance
20	(a)		Conditions Low/decreased pressure AND high/increased temperature Pressure: Right-hand/product side has more (gaseous) moles/molecules OR left-hand side/reactant side has fewer (gaseous) moles/molecules \checkmark Temperature: (Forward) reaction is endothermic / takes in heat OR reverse reaction is exothermic / gives out heat \checkmark	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC DO NOT ALLOW more atoms on right-hand side OR fewer atoms on left-hand side. DO NOT ALLOW incorrect shift direction
			Low pressure gives a slow rate OR High temperature uses a large amount of energy/fuel \checkmark		ORA IGNORE 'expensive’ IGNORE use of catalyst
	(b)	(i)	$\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$ Units: $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \checkmark$	2	IGNORE state symbols in K_{c} expression, even if wrong. For units, ALLOW $\mathrm{mol}^{-1} \mathrm{dm}^{3}$ DO NOT ALLOW dm ${ }^{3} / \mathrm{mol}$ NOTE: If K_{c} upside down, units become mol dm ${ }^{-3}$ by ECF No other ECF allowed for units.

Question		Answer	Marks	Guidance
21	(a)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 0.753, award $\mathbf{3}$ marks $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-2.440}=3.63 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & {\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{\left[\mathrm{H}^{+}\right]^{2}}{K_{\mathrm{a}}} \text { OR } \frac{\left(3.63 \times 10^{-3}\right)^{2}}{1.75 \times 10^{-5}}} \\ & \left.=0.753(\mathrm{~mol} \mathrm{dm})^{-3}\right) \end{aligned}$	3	ALLOW use of HA and \mathbf{A}^{-} ALLOW 3 SF up to calculator value of $3.630780548 \times 10^{-3}$ correctly rounded NOTE: Answer is same from unrounded $\left[\mathrm{H}^{+}\right]$ calculator value and $3 \mathrm{SF}\left[\mathrm{H}^{+}\right]$value ALLOW 0.749 if [H^{+}] has been subtracted from $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ for greater accuracy at end
	(b)		2	Watch for opposite order on RHS, i.e.: $\mathrm{FCH}_{2} \mathrm{COO}^{-}+\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}$ Take great care matching labels ALLOW ECF for incorrect proton transfer as below. This is the ONLY ECF

Question	Answer	Marks	Guidance
(c) ${ }^{\text {(i) }}$	[$\left.\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$ $\begin{aligned} & n\left(\mathrm{CH}_{3} \mathrm{COONa}\right)=\frac{9.08}{82.0} \text { OR } 0.111 \checkmark(\text { Calc: } 0.1107317073) \\ & {\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\frac{9.08}{82.0} \times \frac{1000}{250}=0.443\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & \text { OR } n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=0.800 \times \frac{250}{1000}=0.200(\mathrm{~mol}) \checkmark \end{aligned}$ $\left[\mathrm{H}^{+}\right]$ $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}\right]} \text { OR } K_{\mathrm{a}} \times \frac{n\left(\mathrm{CH}_{3} \mathrm{COOH}_{3}\right)}{n\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)}} \\ & \quad=1.75 \times 10^{-5} \times \frac{0.800}{0.443} \text { OR } 1.75 \times 10^{-5} \times \frac{0.200}{0.111} \\ & \quad=3.16 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark \end{aligned}$ pH (must come from calculated $\left[\mathrm{H}^{+}\right]$) $\mathrm{pH}=-\log \left(3.16 \times 10^{-5}\right)=4.50$ LAST 3 marks are NOT available using - K_{a} square root approach (weak acid pH) - $K_{\mathrm{w}} / 10^{-14}$ approach (strong base pH) Henderson-Hasselbalch (HH) alternative $\begin{aligned} \mathrm{p} K_{\mathrm{a}}= & -\log 1.75 \times 10^{-5}=4.757(\text { or } 4.756961951 . .) \\ \mathrm{pH}= & \mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \text { OR }=\mathrm{p} K_{\mathrm{a}}-\log \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}\right]} \\ & O R \mathrm{p} K_{\mathrm{a}}+\log \frac{0.443}{0.800} \quad \mathrm{OR}=\mathrm{p} K_{\mathrm{a}}-\log \frac{0.800}{0.443} \checkmark \\ = & \mathrm{p} K_{\mathrm{a}}-0.257 \checkmark \\ = & 4.757-0.257=4.50 \checkmark \end{aligned}$	5	ALLOW 2 sig fig ALLOW use of HA and \mathbf{A}^{-} Mark by ECF Alternative method (If both methods are attempted, mark the method which produces the higher mark) [H^{+}] $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.50}} \\ & =3.16 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\vee} \end{aligned}$ [$\left.\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$ $\begin{aligned} & {\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=K_{\mathrm{a}} \times \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{H}^{+}\right]}} \\ & \text {OR } 1.75 \times 10^{-5} \times \frac{0.800}{3.16 \times 10^{-5}} \\ & =0.443\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark \end{aligned}$ mass of $\mathrm{CH}_{3} \mathrm{COONa}$ $\begin{aligned} & \text { mass } \mathrm{CH}_{3} \mathrm{COONa}=0.443 \times \frac{250}{1000} \\ & \text { OR } 0.111 \checkmark \\ & 0.111 \times 82.0=9.08(\mathrm{~g}) \checkmark \end{aligned}$ Common errors 4.64 Use of $M\left(\mathrm{CH}_{3} \mathrm{COONa}\right)=604$ marks 2.40 Use of K_{a} of $\mathrm{FCH}_{2} \mathrm{COOH}$

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| | (ii) | pH is the same/constant \checkmark
 ratio/proportion $[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$is the same \checkmark | $\mathbf{2}$ | M2 is dependent upon M1
 ALLOW Change in $[\mathrm{HA}]$ and $\left[\mathrm{A}^{-}\right]$is
 proportional |
| | | Total | $\mathbf{1 2}$ | |

Question			Answer	Marks	Guidance
22	(a)	(i)	Circuit: complete circuit AND voltmeter AND labelled salt bridge linking two half-cells \checkmark Half cells: Pt AND Fe ${ }^{2+}$ AND Fe ${ }^{3+} \checkmark$ $\text { Zn AND } \mathrm{Zn}^{2+} \checkmark$ Standard conditions: $\begin{aligned} & 1 \mathrm{~mol} \mathrm{dm}^{-3} \text { (solution(s)) } \\ & \text { AND } 298 \mathrm{~K} / 25^{\circ} \mathrm{C} \checkmark \end{aligned}$	4	Electrodes / salt bridge must at least touch the surface ALLOW small gaps in circuit wires ALLOW half cells drawn either way around ALLOW $1 \mathrm{~mol} / \mathrm{dm}^{3}$ OR 1 M ALLOW $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M}$ if omitted here but shown for just one solution in diagram IGNORE pressure DO NOT ALLOW 1 mol(e) for concentration
		(ii)	1.53 (V) \checkmark	1	IGNORE sign
	(b)		strongest reducing agent: $\mathrm{Zn} \checkmark$ strongest oxidising agent: $\mathrm{MnO}_{4}{ }^{-} \checkmark$	2	NOTE: H^{+}has been ignored
	(c)		AWARD 2 marks for correct balancing AND all species cancelled on both sides of equation: $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{SO}_{3}^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{SO}_{4}^{2-} \checkmark \checkmark$ AWARD 1 mark for correct balancing but not all species $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}\right)$cancelled on both sides of equation \checkmark $\text { e.g. } \begin{aligned} 2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{SO}_{3}^{2-} & +5 \mathrm{H}_{2} \mathrm{O} \\ & \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{SO}_{4}^{2-}+10 \mathrm{H}^{+} \end{aligned}$	2	ALLOW correct multiples $\text { e.g. } \begin{aligned} \mathrm{MnO}_{4}^{-}+ & 3 \mathrm{H}^{+} \\ & +2^{1 / 2} \mathrm{SO}_{3}{ }^{2-} \\ & \mathrm{Mn}^{2+}+1^{1 / 2} \mathrm{H}_{2} \mathrm{O}+2^{1 / 2} \mathrm{SO}_{4}^{2-} \end{aligned}$ IGNORE state symbols e.g. $\begin{aligned} & \mathrm{MnO}_{4}^{-}+ 8 \mathrm{H}^{+} \\ &+2^{1 / 1 / 2} \mathrm{SO}_{3}{ }^{2-}+2^{1} / 2 \mathrm{H}_{2} \mathrm{O} \\ & \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+2^{1 / 2} \mathrm{SO}_{4}{ }^{2-}+5 \mathrm{H}^{+} \end{aligned}$
			Total	9	

Questio	Answer	Marks	Guidance
(b)*	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive conclusion using all data to obtain correct formulae for A, B, C and D AND optical isomers shown There is a well-developed line of reasoning which is clear and logically structured with use of 3D structures for both optical isomers of C , use of wedges and bonding to N. The information presented is relevant and substantiated. Level 2 (3-4 marks) Reaches a sound conclusion for the formula of B AND obtains the correct formula of the hydrated complex \mathbf{A} OR a 3D diagram of one optical isomer of cation C There is a line of reasoning and supported by some evidence. Calculations are clear and can be followed to obtain correct conclusions. 3D diagram, if present, should use wedges mostly correctly. Formula of \boldsymbol{A} to show water separately or formula of \boldsymbol{C} to show ligands separately, as appropriate. Level 1 (1-2 marks) Reaches a simple conclusion to obtain the correct formula of anhydrous complex B OR shows that A contains $2 \mathrm{H}_{2} \mathrm{O}$ There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. Attempts more than one part of the problem. 0 marks No response or no response worthy of credit.	6	Indicative scientific points may include: 1. Formula of anhydrous complex B $\mathrm{NiC}_{6} \mathrm{~N}_{6} \mathrm{H}_{24} \mathrm{Cl}_{2}$ Example of working $\begin{aligned} & \mathrm{Ni}: \stackrel{\mathrm{C}}{\mathrm{Ni}}: \mathrm{N}: \mathrm{H}_{2}: \mathrm{Cl} \\ = & \frac{18.95}{58.7}: \frac{23.25}{12.0}: \frac{27.12}{14.0}: \frac{7.75}{1.00}: \frac{22.93}{35.5} \end{aligned}$ There may be other methods 2. Formula of hydrated complex A $\mathrm{NiC}_{6} \mathrm{~N}_{6} \mathrm{H}_{24} \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{NiC}_{6} \mathrm{~N}_{6} \mathrm{H}_{24} \mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ Example of working $\begin{aligned} & n(\text { anhydrous salt })=\frac{7.433}{309.7}=0.02400(\mathrm{~mol}) \\ & n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{0.864}{18.0}=0.04800(\mathrm{~mol}) \end{aligned}$ There may be other methods 3. Formula of cation \mathbf{C} $\left.\left[\mathrm{NiC}_{6} \mathrm{~N}_{6} \mathrm{H}_{24}\right]^{2+} \mathrm{OR}\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right)\right]^{2+}$ (could be in structures 2+ charge can be shown on cation OR optical isomers (i.e. seen somewhere) - Bidentate ligand D $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ or displayed so that structure is clearly unambiguous. - Optical isomers Accuracy of structures

Question	Answer	Marks	Guidance
			Bonding shown from Ni to N of $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ ALLOW $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right)_{2}$ for ligand For $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ in optical isomers, ALLOW C-C without Hs and $\mathrm{NH}_{2} \quad \mathrm{NH}_{2}$
			Each structure to contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and Bond into paper can be shown as: $\because \prime \prime \prime \prime \prime \prime \prime \prime, ~ \ddots, ~ \ddots!\prime \prime \prime \prime \prime \prime \prime \prime \prime \prime . .$.
	Total	13	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

