Write your name here		
Surname		Other names
Pearson Edexcel Certificate Pearson Edexcel International GCSE	Centre Number	Candidate Number
Chemistry Unit: KCH0/4CH0 Science (Double Aw Paper: 1C		/4SC0
Thursday 19 May 2016 – Ma Time: 2 hours	orning	Paper Reference KCH0/1C 4CH0/1C KSC0/1C 4SC0/1C
You must have: Calculator, ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 120.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

		[]						
	0	A Helium				Radom 86		
	~		19 Fluorine 9 35.5 Chlorine 17	80 Bromine 35	127 53	210 At Astatine 85		
	9		16 Oxygen 8 Sultur 16	79 Selenium 34		210 Polonium 84		
	Ŋ		14 Nitrogen 7 31 Phosphorus	75 AS Arsenic 33	122 Sb 51 51	Bis uth 83 uth 83 Uth		
	4		-14 Silicon 28 6 Carbon 72	73 Germanium 32	55 <mark>N</mark> 19 87 N	207 Pbb 82 82		
	ო		11 Beron 5 13 13 13 13			204 TI B1 81		
			L		112 Cd Cadmium 48	A Mercury B0 80		
TABL				63.5 Cu Copper 29		197 Au Gold 79		
THE PERIODIC TABLE				59 Nickel 28	106 Pd Palladium	195 Platinum 78		
HE PEI				59 Cobalt 27		192 Iridium 77		
F				56 Ton Ce	R.	190 Osmium 76		
	Group	Hydrogen		55 Mn Manganese 25	99 TC Technetium	186 Renium 75	Key Relative atomic mass Symbol Name Atomic number	
		<u> </u>		52 Cr Chromium 24	96 MO Molybdenum 42	184 W Tungsten 74		
				51 Vanadium 23	93 Niobium 41	181 Tantalum 73		
				48 Ti Titanium 22	91 Zrconium 40	179 Hathium 72		
				45 Scandium 21	89 Yttrium 39	139 Lanthanum 57 Actinium 89		
	N		9 Beryllium 4 Magnesium 12	40 Calcium 20	1	137 Barium 56 226 Radium 88		
	-		Lithium 3 3 3 3 Sodium 11	39 K Potassium 19	86 Rubidium 37	133 CS Caesium 55 223 Fr Francium 87		
	Deriod	F	N 0	4	Q	4 00	-	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 4 5 7 2 8 A 0 2 2 8

1 The di	agram shows a kettle of boiling water.	
	water droplets water vapour kettle	
As the	water vapour cools it turns into droplets of liquid water.	
(a) Th	e change of state when water vapour changes into liquid water is described as	(1)
A	boiling	(1)
B	condensation	
🛛 C	evaporation	
⊠ D	sublimation	
(b) De	scribe what happens when water vapour cools to form liquid water.	
	ur answer should include the change in the energy, arrangement and ovement of the particles.	(3)
change in	energy	
change in	arrangement	
change in	movement	
	(Total for Question 1 = 4 ma	rks)

DO NOT WRITE IN THIS AREA

(ii) Why is the gas allowed to cool before its volume is measured?	(1)
(iii) The small pile of copper powder is then heated and the remaining gas is passed several times over the hot copper. The copper does not turn black. Suggest why the small pile of copper does not turn black.	(1)
(d) In another experiment, the total volume of air in the apparatus before heating is 150 cm ³ . At the end of the experiment the volume of gas remaining is 125 cm ³ . Use this information to calculate the percentage of oxygen in this sample of air.	(2)
percentage of oxygen = (Total for Question 2 = 8 ma	

(1)

A student wants to find out if the green colouring in grass is a mixture of dyes.

- (i) Add three more labels to the diagram to show
 - the solvent
 - the chromatography paper
 - the original position of the spot of the green solution
- (ii) Explain how many different dyes are present in the green colouring.

(1)

(3)

(Total for Question 3 = 5 marks)

4 The diagram shows the electronic configurations of six different atoms.

7

NOT WRITE IN THIS AREA

(3)

DO NOT WRITE IN THIS AREA

5 A student uses this apparatus to investigate the temperature changes that take place when certain metals are added to dilute sulfuric acid.

This is the student's method:

- use the five metals aluminium, copper, iron, magnesium and zinc
- add the same amount of each metal separately to 25 cm³ of acid
- in each case the acid is in excess
- stir the mixture and record the highest temperature reached
- (a) Use the diagrams of the thermometer in the table to record the highest temperature reached in each experiment.

Record all temperatures to the nearest 0.5 °C.

			Metal		
	aluminium	copper	iron	magnesium	zinc
Thermometer					
Highest temperature in °C					

plain the result obtained with copper.	(
ame amount of magnesium is added to 50 cm ³ of dilute sulfuric acid. in the effect this would have on the temperature change observed.	(
(Total for Question 5 =	= 7 mark

(b) (i) In each experiment the initial temperature of the acid is 25 $^\circ C.$

This question is about hydrogen (H ₂) and water.	
(a) Hydrogen is a gas at room temperature. It exists as simple molecules.	
(i) Draw a dot and cross diagram to show the arrangement of the electrons hydrogen molecule.	in a (1)
 (ii) Explain why hydrogen has a very low boiling point.	(2)
 (b) The symbols for the three isotopes of hydrogen are ¹ H ² H ³ H (i) State what is meant by the term isotopes .	(2)
 (ii) Complete the table to show the number of protons, neutrons and electro each of the three isotopes of hydrogen.	ons in (3)
lsotope	
¹ H ² H ³ H	
number of protons	
number of neutrons	

 P
 4
 5
 7
 2
 8
 A
 0
 1
 0
 2
 8

VERVE ON OUT WRITE IN THIS AREA (iii) Describe	HIS AREA	(i) State the surround
VIENTIAL IN THIS AREA	NOT WRITE IN T	(ii) Write a c hydroge
DO NOT WRITE IN THIS AREA (iv) Describe	DC	(iii) Describe
	AREA	
OT WRITE IN THIS AREA	E IN THIS	
OT WRITE IN THIS AREA	NOT WRIT	(iv) Describe
OT WRITE IN THIS AREA	Q	
E I		
E I		
E I	AREA	
E I	IN THIS	
NO NO	JT WRITE	
	DO NC	

(c)

When hydrogen burns in oxygen, heat energy is transferred to the sur	
 State the name given to a reaction in which heat energy is transfer surroundings. 	red to the (1)
(ii) Write a chemical equation to represent the reaction that takes plac hydrogen burns in oxygen.	e when (2)
(iii) Describe a chemical test to show that the product is water.	(2)
(iv) Describe a physical test to show that the product is pure water.	(2)
(Total for Question	n 6 = 15 marks)

The apparatus in the diagram is used to heat a sample of hydrated copper(II) sulfate 8 crystals, CuSO₄.5H₂O

The equation for the reaction that takes place is

$$CuSO_4.5H_2O(s) \rightarrow CuSO_4(s) + 5H_2O(l)$$

5728A0132

She carries out two experiments.

Experiment 1

- Using a measuring cylinder, she pours 20 cm³ of aqueous sodium hydroxide into a conical flask and records its temperature.
- Using a burette, she adds 5 cm³ of solution X to the conical flask.
- She stirs the mixture with the thermometer and records the temperature.
- She adds further 5 cm³ volumes of solution X and stirs with the thermometer.
- She records the temperature after each addition of solution X.
- She stops when a total of 40 cm³ of solution X has been added.

Experiment 2

- She empties the burette and rinses it first with water and then with solution Y. She then fills the burette with solution Y.
- She repeats the experiment using solution Y.

The table shows the results she obtains in Experiment 1.

Experiment 1 – Solution X				
Volume in cm ³ of solution X added	Temperature in °C			
0	23.0			
5	27.0			
10	31.0			
15	32.2			
20	30.6			
25	28.9			
30	27.3			
35	25.6			
40	24.0			

(a) Plot the results for Experiment 1 on the grid. Draw a straight line of best fit through the first three points and a second straight line of best fit through the last six points.

Make sure that the two straight lines cross.

5 7 2 8 A 0 1 5

				2		
		è				
		ì				
		ś				
			ç			
			Ś			
	à	ć	à	4		
5	þ	ý	è	4		
2	Ś	Ź	Ś	2	ļ	
ξ	Ś	Ź	Ś	2		
Ş	2	Ź	Ì	4	ĺ	
Ş	2	į	Ì	4	ļ	
	Į	ļ	ļ	Ņ	ļ	
	Į	ļ	ļ	Ņ	2	
	Į	ļ	ļ	Ņ		
	Į	ļ	ļ	Ņ		
	Į	ļ	ļ	Ņ		
	Į	ļ	ļ	Ņ		
	Į	ļ	ļ	Ņ		
	Į	ļ	ļ			
				Ņ		

(c) Why did the student rinse the burette first with water, and then with solution Y, before performing Experiment 2? (2) water solution Y (d) The maximum temperature rise in Experiment 2 was less than that in Experiment 1. Suggest a reason why. (1) (Total for Question 9 = 9 marks)

P 4 5 7 2 8 A 0 1 6 2 8

- **10** This question is about hydrochloric acid.
 - (a) Dilute hydrochloric acid, HCl(aq), reacts with many metals.

A student observes the reaction of dilute hydrochloric acid with four metals, P, Q, R and S. She uses the same amount of metal in each case.

The table shows her observations.

Metal	Observations
Р	very few bubbles produced very slowly
Q	many bubbles produced very quickly
R	many bubbles produced quickly
S	few bubbles produced slowly

Use the information in the table to place the four metals in order of reactivity.
 Place the most reactive first.

most reactive			least reactive	
(ii) Give the names of the two dilute hydrochloric acid.	products formed	when magnesium	reacts with	(2)
Product 1				
Product 2				
(b) Describe a test to show that d	lilute hydrochloric	acid contains chlo	ride ions.	(2)
		(Total for Que	stion 10 = 6 mar	ʻks)

17

(2)

5 7 2 8 A 0 1 8

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(f)	(i)	The substitution reaction between W and bromine is similar to the reaction between methane and bromine. Suggest the displayed formula for a possible product of the reaction between W and bromine.	(1)
	(ii)	State the condition required for this reaction to take place.	(1)

(Total for Question 11 = 9 marks)

19

...

12 Titanium is a metal that can be extracted from its ore in a three-stage process. titanium ore is converted into titanium dioxide, TiO₂ stage 1 titanium dioxide is then converted into titanium chloride, $TiCl_4$ stage 2 stage 3 titanium chloride is converted into titanium, Ti (a) A titanium ore contains the composition by mass Fe = 36.8%Ti = 31.6% O = 31.6%Show by calculation that the empirical formula of this ore is FeTiO₃ (3)(b) The equation for the conversion of titanium dioxide into titanium chloride is TiO_2 + 2CI_2 + C \rightarrow TiCI_4 + CO_2 Explain which element has been oxidised in this reaction. (2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

٠	titanium chloride vapour is passed through molten magnesium in an atmosphol	ere
•	the products are allowed to cool to form a solid mixture of titanium and magnesium chloride	
•	this mixture is crushed into a powder and then added to water to dissolve the magnesium chloride	
(i)	Write a chemical equation for the reaction between titanium chloride and magnesium.	
		(2)
(ii)	Suggest why this reaction cannot be successfully carried out in an atmosphere of air.	
	of alf.	(1)
(iii) Suggest why the mixture is crushed into a powder before it is added to water.	(1)
(d) (i)	Describe the bonding in titanium metal.	(2)
(ii)	Explain why titanium conducts electricity.	
		(1)
	(Total for Question 12 = 12 ma	rks)

21

o) lodi	ine monochloride reacts reversibly with chlorine to form iodine trichloride.	(1)
o) lodi	ine monochloride reacts reversibly with chlorine to form iodine trichloride.	
	$egin{array}{cccc} {\sf ICI}&+&{\sf CI}_2&\rightleftharpoons&{\sf ICI}_3\\ {\sf dark}&&{\sf yellow}\\ {\sf brown} \end{array}$	
The	reaction mixture is allowed to reach a state of dynamic equilibrium.	
	One feature of a reaction that is in dynamic equilibrium is that both the forward reaction and the backward reaction occur simultaneously.	
	Give two other features of a reaction that is in dynamic equilibrium.	(2)
(::)	When the equilibrium minture is bested, it becomes deduce brown in colour	
(11)	When the equilibrium mixture is heated, it becomes darker brown in colour. Explain whether the backward reaction is exothermic or endothermic.	
		(2)
	(Total for Question 13 = 5 r	marks)

14 Potassium hydrogencarbonate (KHCO₃) decomposes on heating.

Three possible equations for the decomposition are

equation 1	$2KHCO_3(s) \ \rightarrow \ K_2O(s) \ + \ 2CO_2(g) \ + \ H_2O(g)$
equation 2	$\text{KHCO}_3(s) \rightarrow \text{KOH}(s) + \text{CO}_2(g)$
equation 3	$2KHCO_{3}(s) \rightarrow K_{2}CO_{3}(s) + CO_{2}(g) + H_{2}O(g)$

When 8.00 g of potassium hydrogencarbonate is heated until it is fully decomposed, 5.52 g of solid is formed.

(a) Complete the table by calculating the amount, in moles, of each solid.

(2)

Solid	<i>M</i> _r of solid	Mass of solid in g	Amount of solid in mol
KHCO ₃	100	8.00	
K ₂ O	94	5.52	
КОН	56	5.52	
K ₂ CO ₃	138	5.52	

(b) Use the information in the table to explain which equation, 1, 2 or 3, represents the decomposition of potassium hydrogencarbonate.

(2)

(Total for Question 14 = 4 marks)

(1)

(3)

DO NOT WRITE IN THIS AREA

15 Butane (C_4H_{10}) is a gas at room temperature and pressure.

 (Total for Question 15 = 8 ma	irks)
	(1)
 (iv) Suggest one other reason why the two ΔH values are different.	
(iii) Explain how the formation of the soot may account for the difference between the value of ΔH from the experiment and the value of ΔH in the data book.	(1)
 Suggest how this soot is formed.	(1)
 (ii) The student notices that at the end of the experiment the bottom of the beaker is covered in black soot (carbon).	
 (i) What is the significance of the negative sign for ΔH ?	(1)
A data book value is -2887 kJ/mol.	

DO NOT WRITE IN THIS AREA

(c) (i) The experiment is repeated using	
 the same mass of identical calcium carbonate lumps 	
• the same volume of hydrochloric acid but of a higher concentration	
Sketch on the graph the curve that would be produced.	(2)
(ii) Explain, using the particle collision theory, how the rate of reaction changes	(=)
with an increase in concentration of hydrochloric acid.	
	(3)
(Total for Question 16 = 7 ma	arks)
TOTAL FOR PAPER = 120 MA	RKS
	27

DO NOT WRITE IN THIS AREA

BLANK PAGE

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

