Write your name here		
Surname	С	Other names
Pearson Edexcel Level 3 GCE	Centre Number	Candidate Number
Chemistry Advanced Paper 2: Advanced O		Physical Chemistry
Sample Assessment Materials for first Time: 1 hour 45 minutes	teaching September 2	Paper Reference 9CH0/02
You must have: Data Booklet Scientific calculator, ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- You may use a scientific calculator.
- For questions marked with an *, marks will be awarded for your ability to structure your answer logically showing the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Show all your working in calculations and include units where appropriate.

S47554A ©2015 Pearson Education Ltd.

r				
			Answer ALL questions.	
			Write your answers in the spaces provided.	
		I	Some questions must be answered with a cross in a box ⊠. f you change your mind about an answer, put a line through the box ⊠ and then mark your new answer with a cross ⊠.	
1	This qu	Jest	tion is about some hydrocarbons.	
	(a) (i)	W	nich isomeric alkane has the lowest boiling temperature?	(1)
	\times	A	2,2-dimethylbutane	(1)
	\times	В	hexane	
	\times	C	3-methylpentane	
	\times	D	2-methylpentane	
	(ii)	WI	hat is the name of this alkane?	
	\times	A	4-ethylpentane	(1)
	\times	В	2-ethylpentane	
	\times	c	4-methylhexane	

D 3-methylhexane

X

(b) Describe how	the orbitals from carbon atoms interact to form the bonds in a
benzene ring.	You may include a labelled diagram to support your answer.

(Total for Question 1 = 5 marks)

(b) Which compound forms a pale yellow precipitate when reacted with iodine as sodium hydroxide solution?	nd (1)
☑ A	
B	
☑ C	
(c) Which compound forms a silver mirror when reacted with Tollens' reagent?	(1)
A	
B	
☑ C	
D	
(Total for Question 2 = 3	3 marks)

		ion is about amines.	
(a) An	nine	s can behave as bases.	
W	hat i	s meant by the term base?	(1)
b) Wl so	hich lutic	of these compounds has the highest pH when dissolved in water to form ons of the same concentration?	
			(1)
\times		NH ₃	
\times		CH ₃ NH ₂	
×		C ₆ H ₅ NH ₂	
\times	D	NH ₄ Cl	

(c)	A student wrote a statement about the mechanism of the reaction between a
	primary chloroalkane and an amine.

The amine acts as a nucleophile due to its unpaired electron. It attacks the slightly positive carbon in the chloroalkane, forming an intermediate. The carbon is slightly positive as it is attached to an electropositive chlorine atom. The intermediate then loses a proton and a chloride ion, forming the product, an N-substituted amide.

Identify and correct **two** of the errors in the statement.

(2)

(Total for Question 3 = 4 marks)

- 4 This question is about the properties of amino acids and other organic compounds.
 - (a) A chromatogram of two amino acids, **A** and **B**, is shown.

The R_f value of amino acid A is

- 🖾 **A** 0.51
- **■ B** 0.56
- C 0.63
- **□ D** 0.67

(1)

(b) Amino a	cid B has the structure H_2 NCH	I(CH ₂ CH(CH ₃) ₂)COO	θH.	
Predict t	he pH of the solution formed	when it dissolves i	n water and justify you	ır answer.
				(2)
(c) Some da	ata about different organic cor	mpounds is shown	in the table.	
		Relative	Melting	

Compound	Relative molecular mass	Melting temperature / °C
glycine (an amino acid)	75	233
butan-1-ol	74	-90
pentane	72	-130

Use information from the table to justify the types of intermolecular forces in each of these compounds.

(Total for Question 4 = 7 marks)

- **5** This question is about the chemistry of iodine compounds and hydrocarbons.
 - (a) Iodine monochloride (ICI) reacts with unsaturated compounds such as sunflower oil.
 - (i) Which diagram shows the first step in the mechanism of the reaction between iodine monochloride and an unsaturated compound?

(1)

B

🛛 A

K C

🛛 D

- (ii) What is the name and type of the mechanism in the overall reaction?
- (1)

- A electrophilic substitution
- B nucleophilic substitution
- C electrophilic addition
- D nucleophilic addition
- (b) The number of grams of iodine from iodine monochloride that reacts with 100 g of an oil or fat is known as the iodine value and is used to compare levels of unsaturation in different oils and fats.

An excess of iodine monochloride, 11.0 g, was mixed with 6.40 g of sunflower oil. The remaining unreacted iodine monochloride was treated with excess potassium iodide to liberate iodine.

$$|C| + K| \rightarrow KC| + I_2$$

The liberated iodine was titrated with sodium thiosulfate solution of concentration 0.500 mol dm⁻³. 21.20 cm³ of this solution was required to completely react with the liberated iodine.

 $I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$

(i) Calculate the amount, in mol, of sodium thiosulfate that reacted with the liberated iodine and hence calculate the amount (in mol) of liberated iodine.

(2)

(ii)	Us	e your answer to (i) and the initial mass of iodine monochloride, 11.0 g, to	
	са	lculate the iodine value of the oil.	(5)
			(5)
(c) Su	nflo	ower oil can be hydrogenated to form solid fats such as margarine.	
(c) Su Wl	nflo hat	ower oil can be hydrogenated to form solid fats such as margarine. is the most appropriate catalyst for this reaction?	(1)
(c) Su Wl	hat	ower oil can be hydrogenated to form solid fats such as margarine. is the most appropriate catalyst for this reaction? nickel	(1)
W	hat A	is the most appropriate catalyst for this reaction?	(1)
W	hat A B	is the most appropriate catalyst for this reaction? nickel	(1)
	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium	(1)
WI M	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium vanadium(V) oxide	
	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium	
	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium vanadium(V) oxide	
	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium vanadium(V) oxide	
	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium vanadium(V) oxide	
	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium vanadium(V) oxide	
	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium vanadium(V) oxide	
	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium vanadium(V) oxide	
	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium vanadium(V) oxide	
	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium vanadium(V) oxide	
	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium vanadium(V) oxide	
	hat A B C	is the most appropriate catalyst for this reaction? nickel iron rhodium vanadium(V) oxide	

BLANK PAGE

- **6** This question is about the kinetics of chemical reactions.
 - (a) The rate equation for the reaction between hydrogen and nitrogen monoxide is:

rate = $k[H_2][NO]^2$

By what factor does the rate increase when the concentration of hydrogen is tripled and that of nitrogen monoxide is doubled?

(1)

- A 5
- **B** 6
- C 12
- 🖸 **D** 18
- (b) The 'initial rates' method is used to investigate the orders of reaction with respect to reactants **A**, **B** and **C**. The table shows the results obtained.

Dum	Initial con	Initial rate		
Run	А	В	С	/ mol dm⁻³ s⁻¹
1	0.32	0.080	0.16	2.4 × 10 ⁻³
2	0.64	0.080	0.16	4.8 × 10 ⁻³
3	0.32	0.16	0.16	9.6 × 10 ⁻³
4	0.64	0.32	0.48	0.23

(i) Deduce the orders with respect to A and B .	(2)
Α	
B	(2)
	(2)
(iii) Give the rate equation for the reaction.	(1)
(iv) Calculate the rate constant, <i>k</i> , to an appropriate number of significant figures. Give units for your answer.	(3)

$rate = k[CH_3COCH_3][H^+]$		
(i) Give	the overall order of the reaction.	(1)
(ii) Expla prop	in, in terms of collision theory, why increasing the anone changes the rate of reaction.	concentration of (2)

(1)	Explain now a	catalyst affects i	the rate of a react	ion.	
					(3)
(ii)	Draw and labe affects the nur	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	Draw and labe affects the nur	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	erature (2)
(ii)	Draw and labe affects the nur	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	Draw and labe affects the nur	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	Draw and labe affects the nur	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	Draw and labe affects the nur	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	affects the nur number	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	affects the nur number of	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	affects the nur number	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	affects the nur number of	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	affects the nur number of	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	affects the nur number of	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	affects the nur number of	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	affects the nur number of	l lines on the ax nber of particles	es to show how a s with $E > E_a$.	n increase in temp	
(ii)	affects the nur number of	l lines on the ax nber of particles	es to show how a s with <i>E</i> > <i>E</i> _a .	n increase in temp	
(ii)	affects the nur number of	l lines on the ax nber of particles	s with $E > E_a$.		

- 7 The compound 2-phenylethyl propanoate is a synthetic oil used in some fragrances due to its rose-like aroma.
 - (a) Combustion analysis of 1.56 g of 2-phenylethyl propanoate, in a laboratory, produced 4.26 g of $CO_2(g)$ and 1.10 g of $H_2O(I)$.

Show that the data is consistent with the molecular formula of 2-phenylethyl propanoate, $C_{11}H_{14}O_2$.

(4)

(b) Nuclear magnetic resonance (NMR) spectroscopy can be used to determine structural formulae.

An incomplete ¹H NMR spectrum for 2-phenylethyl propanoate shows a peak for the hydrogen atoms attached to the benzene ring.

(iii) In the synthetic route, what type of reaction is Step 2?	(1)
A hydrolysis	
B esterification	
C neutralisation	
D hydrogenation	
(iv) Name a suitable catalyst for Step 2.	
	(1)
(Total for Question	n 7 = 17 marks)

BLANK PAGE

8	Pro	ppanoic acid can be synthesised from propene, a by-product of the petrochemical in	ndustry.
	(a)	Complete the equation to show the formation of propene and one other hydrocar	bon.
		$C_{10}H_{22} \rightarrow C_{3}H_{6} + \dots$	(1)
	(b)	Propanoic acid can be synthesised from propene in 3 steps. A student proposed the following synthesis:	
		Step 1: propene \rightarrow 1-bromopropane	
		Step 2: 1-bromopropane $\rightarrow X$	
		Step 3: $\mathbf{X} \rightarrow \text{ propanoic acid}$	
		 (i) Identify X and give the conditions needed to carry out Step 2 and Step 3 in this synthesis. 	
			(4)
		(ii) Explain, by considering the mechanism of the reaction, why the student's choice of reaction for Step 1 will lead to a low overall yield.	
			(2)

(c) Pr	an analis used in the mean ufacture of nelymears	
	opene is used in the manufacture of polymers.	
(i)	Write an equation to show the formation of poly(propene) from propene.	(2)
(ii)	Describe how the chemical reaction to form the polymer nylon differs from the chemical reaction to form poly(propene).	
		(2)
(iii) Give two ways in which chemists contribute to a more sustainable use of such materials as poly(propene) and nylon.	
		(2)
	(Total for Question 8 = 13 ma	rks)
	(Total for Question 8 = 13 ma	rks)
	(Total for Question 8 = 13 ma	rks)
	(Total for Question 8 = 13 ma	rks)
	(Total for Question 8 = 13 ma	rks)

9 The table shows the formulae of three different halogenoalkanes and the optical activity of the products of their reaction with hydroxide ions in aqueous solution.

Reaction	Halogenoalkane reacting with hydroxide ions	Optical activity of product mixture
1	CH ₃ Cl	none
2	CH ₃ CHBrCH ₂ CH ₃	significant
3	CH ₃ CH ₂ CH ₂ C(Br)(CH ₃)CH ₂ CH ₃	no significant activity

(a) Draw the mechanism for reaction **1**.

(4)

- (b) The halogenoalkane in reaction **2** is 2-bromobutane.
 - (i) Name the halogenoalkane in reaction **3**.

	n the optical activity of the product mixture for reaction 2 and	
reactio	on 3 , in terms of the reaction mechanism.	(6)
		(0)
Compoun	nds containing the alkene functional group can show stereoisomeris	sm.
(i) Draw t	the two structural isomers for an alkene that shows stereoisomerisr	n.
		(1)

(ii) Explain why stereoisomeris	(2)
	(Total for Question 9 = 14 marks)
	TOTAL FOR PAPER = 90 MARKS

BLANK PAGE

	0 (8)	(18) 4.0 hetium 2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	Ł	krypton 36	131.3	Xe	xenon 54	[222]	Rn	radon 86		p							
	7	(21)	19.0	Ŀ	fluorine 9	35.5	ច	cntorine 17	79.9		bromine 35	126.9	_	iodine 53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported		175	Ľ	lutetium 71	[257]	ב	lawrencium 103
	9	(16)	16.0	0	oxygen 8	32.1	S	sultur 16	79.0	Se	selenium 34	127.6	Ъ	tellurium 52	[209]	Po	polonium 84		116 have b	iticated	173	٩٢	ytterbium 70	[254]	°N N	nobelium 102
	2	(15)	14.0	z	nitrogen 7	31.0	۲ ک	pnospnorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		mbers 112.	ully authei	169	Tm	thulium 69	[256]	ΡW	mendelevium 101
	4	(14)	12.0	U	carbon 6	28.1	ŝ	silicon 14	72.6	ge	germanium 32	118.7	Sn	tin 50	207.2	Pb	lead 82	atomic numbers 112-116 hav		167	Ŀ	erbium 68	[253]		fermium 100	
	e	(13)	10.8	В	boron 5	27.0	AI	aluminium 13	69.7	Ga	gallium 31	114.8	Ч	indium 49	204.4	Ħ	thallium 81		nents with		165	Ч	ਸ਼	[254]	Es	einsteinium 99
ients								(12)	65.4	Zn	zinc 30	112.4	PC	cadmium 48	200.6	Hg	mercury 80				163	Q	dysprosium 66	[251]	ູບັ	californium einsteinium 98 99
Elem								(11)	63.5	C	copper 29	107.9	Ag	silver 47	197.0	٩u	gold 79	[272]	Rg	roentgenium 111	159	Ъb	terbium 65	[245]	B	berkelium 97
le of		(0)								ïŻ	nickel 28	106.4	Рd	palladium 46	195.1	Ł	platinum 78	I_	Ds D	damstadtium 110	157	ЪQ	gadolinium 64	[247]	Cu	anium 96
c Tab						(6)				ვ	cobalt 27	102.9		rhodium 45	192.2	╘	iridium 77	[268]	Mt	meitnerium 109	152	Eu	europium 63	[243]	Am	americium 95
riodi		1.0 hydrogen						(8)	55.8	Fe		101.1	Ru	ruthenium 44	190.2	õ	osmium 76	[277]	Hs	hassium 108	150	Sm	samarium 62	[242]	Pu	plutonium 94
The Periodic Table of Elements								(2)	54.9	٩N	chromium manganese 24 25	[98]	Ч	molybdenum technetium ruthenium 42 43 44	186.2	Re	rhenium 75			bohrium 107	[147]	Pm	praseodymium neodymium promethium samarium 59 60 61 61 62	[237]	dN	neptunium plutonium americium 93 94 95
F			mass	bol	number			(9)	52.0	ა		95.9	Wo	molybdenum 42	183.8	3	tungsten 74	[266]	Sg	seaborgium 106	144	PN	neodymium 60		D .	uranium 92
		Key	relative atomic mass	atomic symbol	name atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	q	niobium 41	180.9	Ta	tantalum 73		q	dubnium 105	141	P	praseodymium 59	[231]	Pa	protactinium 91
			relat	atc	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5		hafnium 72	[261]	Rf	rutherfordium 104	140	e C	cerium 58	232	۴	thorium 90
			_					(3)	45.0	х	scandium 21	88.9		yttrium 39	138.9	La*	lanthanum 57	[227]	Ac*	actinium 89		es				
	2	(2)	0.6	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	ca	calcium 20	87.6	S	strontium 38	137.3	Ba	barium 56	[226]	Ra	radium 88		* Lanthanide series	* Actinide series			
	-	(E)	6.9	:-	lithium 3	23.0	Na	sodium 11	39.1	¥	potassium 19	85.5	å	rubidium 37	132.9	പ	caesium 55	[223]	ድ	francium 87		* Lant	* Actir			