Mark Scheme 4728 June 2005

1	(i)	R is smooth	B1 1	
1	(ii)		M1	For resolving forces horizontally to obtain an equation in <i>T</i> (requires 3 relevant terms and at least one force resolved)
		$T + T\cos 60^{\circ} = 1.6\cos 45^{\circ}$ Tension is 0.754 N AG	A1 A1 3	
	(iii)	$mg = T\sin 60^{\circ} + 1.6\sin 45^{\circ}$	M1 A1 ft	For resolving forces vertically to obtain an equation for <i>m</i> (requires 3 relevant terms with both <i>T</i> and the 1.6 N force resolved) ft sin/cos mix from (ii)
		m = 0.182	A1 3	SR $m = T\sin 60^{\circ} + 1.6\sin 45^{\circ}$ M1 $m = 1.78$
	(*)	T	3.71	Ear analysis of Earth (name at least
2	(i)		M1 A1	For applying $F = ma$ (requires at least ma , T and air resistance in linear combination in at least one equation). At least one equation with not more than one error.
		0.2g + T - 0.4 = 0.2a 0.3g - T - 0.25 = 0.3a	A1 A1 4	SR $0.2g - T - 0.4 = 0.2a$ and $0.3g + T - 0.25 = 0.3a$ B1
	(ii)	0.5. 0.6. 0.557. 0.7. 0	M1	For obtaining an equation in T or a only, either by eliminating a or T from the equations in (i) or by applying $F = ma$ to the complete system
		0.5g - 0.65 = 0.5a or 5T - 0.7 = 0	A1 ft	For a correct equation in <i>a</i> only or <i>T</i> only ft opposite direction of <i>T</i> only
		a = 8.5 and $T = 0.14$ (positive only)	A1 3	

3	(i)	Momentum before= $0.1 \times 4 - 0.2 \times 3$	B1	or Loss by $P = 0.1 \times 4 + 0.1u$
		Momentum after = $-0.1u + 0.2(3.5 - u)$	B1	or Gain by $Q = 0.2(3.5 - u) + 0.2 \times 3$
		$0.1 \times 4 - 0.2 \times 3 =$ $-0.1u + 0.2(3.5 - u)$	M1	For using the principle of conservation of momentum
		u = 3 (positive value only)	A1 4	
				SR If mgv used for momentum instead of mv, then $u = 3$ B1
	(ii)		M1	For using $v^2 = u^2 + 2as$ with $v = 0$ (either case) or equivalent equations
		$0 = 3^2 - 10s_1$ and $0 = 0.5^2 - 10s_2$	A1 ft	ft value of <i>u</i> from (i)
		0.9 + 0.025	M1	For using $PQ = s_1 + s_2$
		Distance is 0.925 m cao	A1 4	

4	(:)		M1		For using $s = ut + \frac{1}{2}at^2$ for the
4	(i) α		1711		first stage
		2 00 1/ (00)2	A1		inst stage
		$2 = 0.8u + \frac{1}{2}a(0.8)^2$	3.54		
			M1		For obtaining another
		$8 = 2u + \frac{1}{2}a^2$ or			equation in <i>u</i> and <i>a</i> with
		$6 = 1.2(u + 0.8a) + \frac{1}{2}a(1.2)^2$ or	A1		relevant values of velocity,
		$6 = 1.2(2 \times 2 \div 0.8 - u) + \frac{1}{2} a(1.2)^{2}$	711		displacement and time
			M1		For eliminating <i>a</i> or <i>u</i>
		u = 1.5	A1		
		Acceleration is 2.5 ms ⁻²	A1	7	
	(;) ()	Acceleration is 2.5 ms	M1		For using $s = vt - \frac{1}{2}at^2$ for
	(i) β		IVII		\mathcal{E}
		2 0 0 1/ (0 0)2	A 1		the first stage
		$2 = 0.8v - \frac{1}{2} a(0.8)^2$	A1		T
			M1		For using $s = ut + \frac{1}{2}at^2$ for
		2			the second stage
		$6 = 1.2v + \frac{1}{2}a(1.2)^2$	A 1		
			M1		For obtaining values of <i>a</i>
					and v and using $v = u + at$
					for first stage to find <i>u</i>
		Acceleration is 2.5 ms ⁻² ($v =$	A 1		
		3.5)	A1	7	
		u = 1.5			
	(i) γ	$2 \div 0.8 \text{ ms}^{-1}$ and $6 \div 1.2 \text{ ms}^{-1}$	M1		For finding average speeds
	(1) }	2.0.0 ms and 0.1.2 ms	1411		in both intervals
		$= 2.5 \text{ ms}^{-1} \text{ and } 5 \text{ms}^{-1}$	A1		In both intervals
		= 2.5 ms and $5 ms$	AI		
		04 1, (00)	D1		
		$t_1 = 0.4$ and $t_2 = (0.8 +) 0.6$	B1		For finding mid-interval
					times
		5 = 2.5 + a (1.4 - 0.4)	M1		
					For using $v = u + at$
		_			between
		Acceleration is 2.5 ms ⁻²	A1		the mid-interval times

	$2.5 = u + 2.5 \times 0.4 \text{ or}$ $5 = u + 2.5 \times 1.4$	M1		
	u = 1.5	A1	7	For using $v = u + at$ between t = 0 and one of the mid- interval times
(ii)	$2.5 = 9.8\sin\alpha$ $\alpha = 14.8^{\circ}$	M1 A1ft	2	For using $(m)a = (m)g\sin\alpha$ ft value of acceleration

5	(i)		M1		For resolving forces on <i>A</i> vertically (3 terms)
		$F = 2 + 7\cos\alpha$ F = 3.96 (may be implied)	A1 A1		
		$N = 7\sin\alpha$	M1		For resolving forces on A
		N = 6.72 (may be implied)	A1		horizontally (2 terms)
		$3.96 = \mu 6.72$ Coefficient is 0.589 or 33/56 cao	M1 A1	7	For using $F = \mu N$
	(ii)	$T\cos\beta = 7\cos\alpha$	M1	'	For resolving forces at <i>P</i> vertically (2 terms)
		$T\cos\beta = 7 \times 0.28 \ (=1.96 \ AG)$	A1	2	terms)
	(iii)		M1		For resolving forces on B
		$T\cos\beta - mg = 0$	A1		vertically (2 terms)
		Mass is 0.2 kg	A1	3	

6	(i)(a)	$V = P\cos 20^{\circ} - 0.04g$ P = 0.417	B1 M1 A1	3	For setting $V = 0$
	(i)(b)	$R = P \sin 20^{\circ}$ Magnitude is 0.143 N	M1 A1ft	2	For using $R =$ horizontal component of P ft value of P
	(i)(c)	0.143 = 0.04a Acceleration is 3.57 ms ⁻²	M1 A1ft	2	For using Newton's second law ft magnitude of the resultant
	(ii)	$R^2 = 0.08^2 + (0.04g)^2$ Magnitude is 0.400 N (or 0.40 or 0.4) $\tan \theta = +/-0.04g/0.08$ or $\tan(90^\circ - \theta) = +/-0.08/0.04g$	M1 A1 M1		For using $R^2 = P^2 + W^2$ For using $\tan \theta = Y/X$ or $\tan(90^\circ - \theta) = X/Y$
		Angle made with horizontal is 78.5° or 1.37 radians, or angle made with vertical is 11.5° or 0.201 radians	A1		
		Downwards or below horizontal	B1	5	Direction may alternatively be shown clearly on a diagram or given as a bearing

7	(i)		M1		For using the idea that the area of the quadrilateral represents distance
		$\frac{1}{2}200 \times 16 + 300 \times \frac{1}{2}(16 + 25)$			
		+	A1		
		½ 100×25 (=1600 + 6150 +	A 1	3	
		1250)	A1	3	
		Distance is 9000m			
	(ii)	a = (0 - 25)/(600 - 500)	M1		For using the idea that gradient
					(= vel ÷ time) represents
					acceleration
		Deceleration is 0.25 ms ⁻²	A1		Or for using $v = u + at$
				2	Allow acceleration = - 0.25 ms ⁻²
	(iii)		M1		For using $a(t) = \dot{V}(t)$
	(111)	Acceleration is $(1200t - 3t^2) \times 10^{-6}$	A1	2	Tor doing w(t)
	(iv)	0.25 – 0.2475	M1		For using 'ans(ii) – $ a_Q(550) $ '
		Amount is +/- 0.0025 ms ⁻²	A1ft	2	ft ans(ii) only
	(v)	$1200t - 3t^2 = 0$	M1		For solving $a_Q(t) = 0$ or for finding $a_Q(400)$
		t = (0 or) 400	A1	2	Or for obtaining $a_Q(400) = 0$
	(:)	AG	M1		For correct method for $s_P(400)$
	(vi)	$\frac{1}{2}200 \times 16 + 200 \times \frac{1}{2}(16 + 22)$	A1		For correct method for sp(400)
			M1		For using $s_Q(t) = \int v_Q dt$
		$s_{Q}(t) = (200t^{3} - t^{4}/4) \times 10^{-6} (+C)$ 6400 - 5400	A1		For using correct limits and
		0100 5400	M1		finding
		B: 1000			$ s_0(400) - s_P(400) $
		Distance is 1000 m			1 20(1.00) BP(100)
			A1	6	