4723 Core Mathematics 3

1 (i)	Obtain integral of form ke^{-2x} Obtain $-4e^{-2x}$	M1 A1	any constant <i>k</i> different from 8 or (unsimplified) equiv
(ii)	Obtain integral of form $k(4x+5)^7$	M1	any constant k
	Obtain $\frac{1}{28}(4x+5)^7$	A1	in simplified form
	Include $\dots + c$ at least once	B1 5	in either part
2 (i)	Form expression involving attempts at y values and addition Obtain $k(\ln 4 + 4 \ln 6 + 2 \ln 8 + 4 \ln 10 + \ln 12)$	M1 A1	with coeffs 1, 4 and 2 present at least once any constant k
	Use value of k as $\frac{1}{3} \times 2$	A1	or unsimplified equiv

	Use value of k as $\frac{1}{3} \times 2$ Obtain 16.27	A1 or unsimplified equiv A1 4 or 16.3 or greater accuracy (16.27164))
(ii)	State 162.7 or 163	B1 $\sqrt{1}$ following their answer to (i), maybe rour	ıded

3 (i)	Attempt use of identity for $\tan^2 \theta$	M1 using $\pm \sec^2 \theta \pm 1$; or equiv
	Replace $\frac{1}{\cos \theta}$ by $\sec \theta$	B1
	Obtain $2(\sec^2\theta - 1) - \sec\theta$	A1 3 or equiv

(ii)	Attempt soln of quadratic in $\sec \theta$ or $\cos \theta$	M1	as far as factorisation or
			substitution in correct formula

			substitution in correct formula
Relate $\sec \theta$ to $\cos \theta$ and attempt at least			
one value of θ	M1		may be implied
Obtain 60°, 131.8°	A 1		allow 132 or greater accuracy
Obtain 60°, 131.8°, 228.2°, 300°	A 1	4	allow 132, 228 or greater accuracy; and no
			others between 0° and 360°
		7	

4 (i)	Obtain derivative of form $kx(4x^2+1)^4$	M1	any constant k
	Obtain $40x(4x^2+1)^4$	A1	or (unsimplified) equiv
	State $x = 0$	A1√ 3	and no other; following their derivative of
			form $kx(4x^2 + 1)^4$

(ii)	Attempt use of quotient rule	M1	or equiv
	Obtain $\frac{2x \ln x - x^2 \cdot \frac{1}{x}}{(\ln x)^2}$	A1	or equiv
	Equate to zero and attempt solution	M1	as far as solution involving e
	Obtain $e^{\frac{1}{2}}$	A1 4	or exact equiv; and no other; allow from ± (correct numerator of derivative)
		7	

5 (i) (ii)	State 40 Attempt value of k using 21 and 80 Obtain $40e^{21k} = 80$ and hence 0.033 Attempt value of M for $t = 63$ Obtain 320 Differentiate to obtain $ce^{0.033t}$ or $40ke^{kt}$ Obtain $40 \times 0.033e^{0.033t}$ Obtain 2.64	B1 M1 A1 M1 A1 M1 A1v	 I	or equiv or equiv such as $\frac{1}{21} \ln 2$ using established formula or using exponential property or value rounding to this any constant c different from 40 following their value of k allow 2.6 or 2.64 ± 0.01 or greater
			8	accuracy (2.64056)
6 (i)	Attempt correct process for finding inverse Obtain $2x^3 - 4$ State $\sqrt[3]{2}$ or 1.26	M1 A1 B1	3	maybe in terms of y so far or equiv; in terms of x now
(ii)	State reflection in $y = x$ Refer to intersection of $y = x$ and $y = f(x)$ and hence confirm $x = \sqrt[3]{\frac{1}{2}x + 2}$	B1 B1	2	or clear equiv
(iii)	Obtain correct first iterate Show correct process for iteration Obtain at least 3 correct iterates in all Obtain 1.39 $[0 \to 1.259921 \to 1.380330 \to 1.3$ $1 \to 1.357209 \to 1.388789 \to 1.3$ $1.26 \to 1.380337 \to 1.390784 \to$ $1.5 \to 1.401020 \to 1.392564 \to 1$ $2 \to 1.442250 \to 1.396099 \to 1.3$	9151: 1.391 .3918	4 4 → 2 → 1684 337 -	1.391747 → 1.391761 → 1.391775
7 (i)	Refer to stretch and translation State stretch, factor $\frac{1}{k}$, in <i>x</i> direction State translation in negative <i>y</i> direction by <i>a</i> [SC: If M0 but one transformation complete			
(ii)	Show attempt to reflect negative part in <i>x</i> -axis Show correct sketch	M1 A1	2	ignoring curvature with correct curvature, no pronounced 'rounding' at <i>x</i> -axis and no obvious maximum point
(iii)	Attempt method with $x = 0$ to find value of a Obtain $a = 14$ Attempt to solve for k Obtain $k = 3$	aM1 A1 M1 A1	4 9	other than (or in addition to) value -12 and nothing else using any numerical a with sound process

9 (:)	Attempt to express x or x^2 in terms of y	M1	
8 (i)		M1	Z I I I I I I I I I I I I I I I I I I I
	Obtain $x^2 = \frac{1296}{(y+3)^4}$	A1	or (unsimplified) equiv
	Obtain integral of form $k(y+3)^{-3}$	M1	any constant k
	Obtain $-432\pi(y+3)^{-3}$ or $-432(y+3)^{-3}$	A1	or (unsimplified) equiv
	Attempt evaluation using limits 0 and <i>p</i>	M1	for expression of form $k(y+3)^{-n}$ obtained from integration attempt; subtraction correct way round
	Confirm $16\pi(1-\frac{27}{(p+3)^3})$	A1 6	AG; necessary detail required, including
	(p+3) ²		appearance of π prior to final line
(ii)	State or obtain $\frac{dV}{dp} = 1296\pi (p+3)^{-4}$	В1	or equiv; perhaps involving y
	Multiply $\frac{dp}{dt}$ and attempt at $\frac{dV}{dp}$	*M1	algebraic or numerical
	Substitute $p = 9$ and attempt evaluation	M1	dep *M
	Obtain $\frac{1}{4}\pi$ or 0.785	A1 4	_
·		1	<u>u</u>
9 (i)	State $\cos 2\theta \cos \theta - \sin 2\theta \sin \theta$	B1	
· (4)	Use at least one of $\cos 2\theta = 2\cos^2 \theta - 1$ and $\sin 2\theta = 2\sin \theta \cos \theta$ Attempt to express in terms of $\cos \theta$ only	B1 M1	using correct identities for $\cos 2\theta$, $\sin 2\theta$ and $\sin^2 \theta$
	Obtain $4\cos^3\theta - 3\cos\theta$	A1 4	AG; necessary detail required
(ii)	Either: State or imply $\cos 6\theta = 2\cos^2 3\theta$ - Use expression for $\cos 3\theta$ and	-1B1	
	attempt expansion	M1	for expression of form $\pm 2\cos^2 3\theta \pm 1$
	Obtain $32c^6 - 48c^4 + 18c^2 - 1$		AG; necessary detail required
	Or: State $\cos 6\theta = 4\cos^3 2\theta - 3\cos 2\theta$ Express $\cos 2\theta$ in terms of $\cos \theta$	B1	maybe implied
	and attempt expansion	M1	for expression of form $\pm 2\cos^2\theta \pm 1$
	Obtain $32c^6 - 48c^4 + 18c^2 - 1$	A1 (3	3) AG; necessary detail required
(iii)	Substitute for $\cos 6\theta$	*M1	with simplification attempted
	Obtain $32c^6 - 48c^4 = 0$	A1	or equiv
	Attempt solution for c of equation Obtain $c^2 = \frac{3}{2}$ and observe no solutions	M1 A1	dep *M or equiv; correct work only
	Obtain $c = \frac{1}{2}$ and observe no solutions Obtain $c = 0$, give at least three specific angles and conclude odd multiples of 90	A1 5	· · · · · · · · · · · · · · · · · · ·
		1:	