Vrite your name here Surname		Other name	s
Pearson Edexcel Certificate Pearson Edexcel nternational GCSE	Centre Number		Candidate Number
Chemistry			
Unit: KCH0/4CH0 Paper: 2C			
Unit: KCH0/4CH0			Paper Reference KCH0/2C 4CH0/2C

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

		E		E	ų	- E				
	0	⁴ Heiu ^{Meiu} ² ⁴			84 Krypton 36					
	7		19 Fluorine 9	35.5 Chlorine 17	80 Br 35	127 lodine 53	210 At Astatine 85			
	9		16 Oxygen 8	32 Sultur 16	79 Selenium 34	128 Te Tellurium 52	210 PO B4			
	Ω		14 Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83			
	4		12 Carbon 6	28 Silicon 14	73 Germanium 32	t Suntain Sun	207 PD B2 82			
	ო		5 Banda 1	27 Aluminium 13	70 Gallium 31		204 TI Thallium 81			
ш			L		65 Zinc 30	112 Cadmium 48	201 Hg Mercury 80			
THE PERIODIC TABLE					63.5 Copper 29	108 Ag Silver 47	197 Au Gold 79			
RIODIC					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78			
HE PE					59 Cobalt 27		192 Iridium 77			
F					56 Ton 26	l 2	190 Osmium 76		ſ	Ther c
	Group	Hydrogen 1			55 Mr Manganese 25	96 99 Mo Molybdenum Technetium 42 43	186 Renium 75	1	Key	Relative atomic mass Symbol Name Atomic number
					52 Chromium 24	96 Molybdenum 42	184 W Tungsten 74			
					51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73			
					48 Titanium 22	91 Zr Zirconium 40				
						99 ¥ttrium 39	139 La Lanthanum 57	227 Actinium 89		
	N		9 Beryllium 4	24 Mg 12	40 Calcium 20		137 Ba Barium 56	1 1		
	-		7 Li 1 3	23 Sodium 11	39 K Potassium 19	86 Rubidium 37	133 CS Caesium 55	223 Fr 87 87		
		Period	N	ო	4	2	9	~		

P 4 4 2 5 5 A 0 2 2 0

P 4 4 2 5 5 A 0 3 2 0

2 The solubility of a solid in water is the maximum mass of the solid that can dissolve in 100 g of water at a given temperature.

An aqueous solution containing this maximum mass can be described as a saturated solution.

The graph shows the solubilities of three solids at different temperatures.

(c) The rusting of iron objects is a major problem.	
Name the two substances needed for iron to rust.	
	(2)
1	
2	
(d) The order of reactivity of three metals is	
most reactive	
zinc	
iron tin	
least reactive	
Iron objects can be prevented from rusting by coating them with zinc or tin.	
Some of these objects may be scratched when used, so the coating may come of	- -
	•
Use the order of reactivity of the metals to suggest why coating these objects with zinc is more effective than coating them with tin.	
	(3)
(Total for Question 3 = 10 ma	arks)
	7

4 (a)	Wine can be made from grapes.	
	The grapes are crushed to produce an aqueous solution containing glucose. Yeast is then added to this solution.	
	The solution is kept at a constant temperature for a period of time. The glucose is converted into ethanol.	
	(i) Name the process in which glucose is converted into ethanol.	(1)
	(ii) What is the purpose of the yeast?	(1)
(b)	Grape vines can be attacked by a fungus that ruins the grapes. The fungus can be using Bordeaux mixture, a solid containing copper(II) sulfate and calcium hydroxid	
	(i) State a test to show that Bordeaux mixture contains calcium ions.	(2)
test fo	r calcium ions	
observ	/ation	
	(ii) A sample of Bordeaux mixture is dissolved in water.	
	Describe separate tests to show that this solution contains copper(II) ions and sulfate ions.	
		(5)
test fo	r copper(II) ions	
observ	vation	
test fo	r sulfate ions	
observ	/ation	

(c) Ethanol can be manufactured by passing a hot mixture of ethene and steam, at a high pressure, over a catalyst.

State the pressure used and name the catalyst.

(2)

pressure atm

catalyst

(d) The equation for the conversion of ethanol into ethene can be written using displayed formulae.

The table gives some average bond energies.

Bond	Average bond energy in kJ/mol
C—C	348
c=c	612
С—Н	412
C—0	360
0—Н	463

Use information from the table to calculate the enthalpy change, in kJ/mol, for the conversion of ethanol into ethene.

(4)

enthalpy change =

.....kJ/mol

(Total for Question 4 = 15 marks)

9

5 A student uses this apparatus to investigate the temperature change that occurs when potassium hydroxide is dissolved in water.

She uses this method.

- pour 50 cm³ of water into the polystyrene cup and measure the temperature of the water
- add 3 g of potassium hydroxide and stir
- record the highest temperature of the solution
- (a) These diagrams show the thermometer readings before and after the student added the potassium hydroxide.

30

25

after

Use the readings to complete the table.

(3)

temperature in °C after adding potassium hydroxide	
temperature in °C before adding potassium hydroxide	
temperature change in °C	

(b) The student uses her results to calculate the enthalpy change for dissolving	,
potassium hydroxide in water.	
She compares her value with a data book value.	
Student's value $= -32$ kJ/mol.	
Data book value = -55 kJ/mol.	
There are no errors in the student's method or in the calculation.	
Suggest two reasons why the student's value differs from the data book value.	
(2)
1	
2	
(Total for Question 5 = 5 marks)
	11

- **6** Potassium sulfide is an ionic compound.
 - (a) Complete the table to show the arrangement of electrons in the ions formed when potassium and sulfur react to form potassium sulfide.

Give the charge on each of the ions.

(3)

Element	Arrangement of electrons in atom	Arrangement of electrons in ion	Charge on ior
K	2.8.8.1		
S	2.8.6		
b) (i) Explain w	hy potassium sulfide conduc	ts electricity when molten.	(1)
(ii) Explain w	hy potassium sulfide has a hi	gh melting point.	(3)
		(Total for Question	on 6 = 7 marks)
2			

BLANK PAGE

7 Sulfuric acid can be manufactured from sulfur in a four-stage process.

stage 1 sulfur is burned in air to form sulfur dioxide

 $S + O_2 \rightarrow SO_2$

stage 2 the sulfur dioxide is reacted with more oxygen to form sulfur trioxide

 $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$

stage 3 the sulfur trioxide is absorbed in concentrated sulfuric acid to make oleum

 $SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$

stage 4 the oleum is carefully diluted with water to form sulfuric acid

(a) Write a chemical equation for the formation of sulfuric acid from oleum.

(1)

(b) A mass of 80 tonnes of sulfur is reacted with oxygen in stage 1.

Calculate the maximum mass, in tonnes, of sulfur trioxide that can be produced in stage 2.

 $[1 \text{ tonne} = 1.0 \times 10^{6} \text{g}]$

(3)

maximum mass =tonnes

(c) Calculate the minimum volume at rtp, in cubic decimetres (dm ³), of oxygen required to completely react with 64 tonnes of sulfur dioxide.	
[1 mol of oxygen at rtp has a volume of 24 dm ³]	<i>(</i> -)
	(2)
volume of oxygen =	dm³
(Total for Question 7 = 6	marks)
(Total for Question 7 = 6	marks)
(Total for Question 7 = 6	marks)
(Total for Question 7 = 6	marks)
(Total for Question 7 = 6	marks)
(Total for Question 7 = 6	marks)
(Total for Question 7 = 6	i marks)
(Total for Question 7 = 6	i marks)
(Total for Question 7 = 6	marks)
(Total for Question 7 = 6	marks)
(Total for Question 7 = 6	i marks)
(Total for Question 7 = 6	i marks)
(Total for Question 7 = 6	i marks)
(Total for Question 7 = 6	i marks)
(Total for Question 7 = 6	i marks)
(Total for Question 7 = 6	i marks)
(Total for Question 7 = 6	
(Total for Question 7 = 6	5 marks) 15 Turn over

8	A student is supplied with	aqueous solutions of these substances.
		1

- bromine
- chlorine
- iodine
- potassium bromide
- potassium chloride
- potassium iodide

Describe two experiments the student could perform, using some of the solutions, to show the order of reactivity of bromine, chlorine and iodine.

Your answer should include the observations that the student would expect to make, and a chemical equation for one of the reactions.

(5)

16	$\begin{array}{ $
	(Total for Question 8 = 5 marks)

BLANK PAGE

Nitrogen dioxide (NO_{γ}) is a brown gas. 9 Dinitrogen tetraoxide (N_2O_4) is a colourless gas. The two gases can exist together in dynamic equilibrium according to the equation $2NO_2(g) \rightleftharpoons N_2O_4(g)$ $\Delta H = -58 \, \text{kJ/mol}$ A mixture of nitrogen dioxide gas and dinitrogen tetraoxide gas is allowed to reach equilibrium in a sealed container at 20°C. This equilibrium mixture is brown in colour. (a) The sealed container is immersed in hot water at 60°C. As the temperature of the gas mixture increases, the pressure of the gas mixture also increases. (i) Predict the effect of the increase in temperature on the position of equilibrium. (1) (ii) Predict the effect of the increase in pressure on the position of equilibrium. (1) (iii) Suggest why it is difficult to predict which way the equilibrium will shift. (1)

equilibrium mixture at 20°C.	(2)
	(Total for Question 9 = 5 marks)
	TOTAL FOR PAPER = 60 MARKS

BLANK PAGE