

GCE

Physics B (Advancing Physics)

Unit G494: Rise and Fall of the Clockwork Universe

Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2014

Annotations available in Scoris

Annotation	Meaning
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or
	unstructured) and on each page of an additional object where there is no candidate response.
	Benefit of doubt given
	Contradiction
×	Incorrect response
	Error carried forward
	Follow through
RMA .	Not answered question
NICO	Benefit of doubt not given
FOT	Power of 10 error
	Omission mark
	Rounding error
	Error in number of significant figures
✓	Correct response
	Arithmetic error
2	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
/	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Qu	estion	Answer	Marks	Guidance
1	а	kg m s ⁻¹	1	
	b	kg m ⁻¹ s ⁻²	1	
2	а		1	any straight line through the origin
	b		1	any curve with increasing gradient through the origin
3	а	frequency of support equals/matches natural frequency of mass-spring system	1	accept driving frequency/vibration frequency as frequency of support accept resonant frequency as natural frequency
b		reduces amplitude of oscillations;	1	accept reduces resonant frequency accept broadens the peak of the amplitude-frequency (accept graph with labelled axes)
		by transferring energy from it / applying friction;	1	accept lose energy

For all calculations, an answer which agrees with the one in the mark scheme to 2 s.f. earns the marks

Question	Answer	Marks	Guidance
4	$T = 273 + \{-63\} = (210 \text{ K});$	1	correct conversion to kelvin [1]
	EITHER		
	Nmc^2	1	use of correct relationships [1]
	$(pV) = NkT = \frac{NNO}{2}$		
	5		
	$\sqrt{c^2} = 348 \text{ m s}^{-1}$	1	evaluation [1]
	OR		- University for the second
	$\frac{1}{2}mv^2 = kT$		allow ect from incorrect conversion to kelvin for [2]
	$v = 284 \text{ m s}^{-1}$		$\frac{1}{2}mv^2 = \frac{3}{2}kT$ gives 348 m s ⁻¹ for [3]
5	initial momentum = $1.6 \times 0.56 - 2.4 \times 0.41 = -0.088$ N s ⁻	1	look for some working as well as value (2 s.f.) for each mark
•	final momentum = $-1.6 \times 0.55 + 2.4 \times 0.33 = -0.088$ N s	1	accept either direction as positive
			accept 11/125 as value of total momentum
6	С	1	
7 a	collides with other molecules;	1	accept particles / atoms accept interacts as collides
	then any one of:		ignore collisions with walls
	results in a random/unpredictable change of	1	look for randomness clearly associated with change of direction
	 velocity 		not the timing of collisions
	 momentum 		in the state of a second second by
			ignore description of a random walk
		-	
	distance $\propto \sqrt{N}$ so distance $\propto N$;	1	accept just mention of distance $\propto \sqrt{N}$ rule for first mark [1]
b	$N \propto t$ so distance $\propto \sqrt{t}$ so $\frac{\text{distance}}{1} = \text{constant so} \frac{5}{1} = \frac{50}{1}$.	1	esert argument without algebra a g 50 mm is 10 v 5 mm, as it
	\sqrt{time} $\sqrt{1}$ $\sqrt{100}$ '	-	needs $10^2 = 100$ times as many steps so takes 100 times as long;
8	age of universe = $14 \times 10^9 \times 3.2 \times 10^7 = 4.48 \times 10^{17}$ s;	1	
	distance = $3.5 \times 10^6 \times 4.48 \times 10^{17} = 1.6 \times 10^{24}$ m;	1	ecf: award [1] for 1.6×10 ²¹ m
	assumption:		
	 steady expansion of universe 	1	
	 constant (recessional) velocity of galaxy 		
	constant value for H ₀ ;		
	Section A Total	20	

Question		1	Answer	Marks	Guidance
9	а		mv ² GMm	1	
			$\frac{1}{r} = \frac{1}{r^2}$		
			GM	1	look for $V^2 = \frac{GM}{r}$ as the smallest intermediate step in
			then rearrangement and cancellation to $V = \sqrt{\frac{r}{r}}$		rearangement and cancellation
	b	i	$v = 1.93 \times 10^4 \text{ m s}^{-1} / v^2 = 3.72 \times 10^8 \text{ m}^2 \text{ s}^{-2}$	1	
					look for correct use of $V = \sqrt{\frac{GNN}{r}}$ for first mark
			$1 mu^2 = 0.21 \times 10^{10}$	1	
			$\frac{1}{2}mv = 9.31 \times 10$ J;	•	allow ecf on incorrect value of v for second mark
					accept 9×10 ¹⁰ J
		п	EITHER $(1, 1)$		use of $V_g = -\frac{GM}{r}$ or $E_{GPE} = -\frac{GMm}{r}$ for [1]
			$\Delta E_{GPE} = 6.7 \times 10^{-11} \times 2.0 \times 10^{30} \times 5.0 \times 10^{2} \left(\frac{1.5 \times 10^{11}}{1.5 \times 10^{11}} - \frac{3.6 \times 10^{11}}{3.6 \times 10^{11}} \right)$	1	calculation of GPE drop for [1]
					calculation of KE at Earth orbit for [1]
			$\Lambda E_{GPE} = -2.61 \times 10^{11} \text{ J}$	1	calculation of speed at Earth orbit for [1]
			$E_{\text{KE}} = 9.31 \times 10^{10} + 2.61 \times 10^{11} \text{ J} = 3.54 \times 10^{11} \text{ J};$	I	no off from one store to the post
			OR		allow ecf from incorrect F_{ec} in (b)(i)
			total <i>E</i> in original orbit = -9.31×10^{10} J;		
			E_{GPE} in Earth orbit = -4.47×10 ¹¹ J;		
			E_{KE} In Earth orbit = -9.31×10 ¹⁰ + 4.47×10 ¹¹ = 3.54×10 ¹¹ J; THEN		
				1	
			$v = \sqrt{\frac{2L_{KE}}{m}} = 3.76 \times 10^4 \mathrm{m s^{-1}};$		
			send a pulse of EM waves (radio, microwaves, light) towards	1	ignore radar
с			the asteroid (and detect its reflection);		
			distance = $\frac{(\text{pulse time} - \text{ecno time})}{2} \times \text{speed of light};$	1	accept equivalent in algebra e.g. $d = \frac{\Delta t}{2}c$ with defined Δt
			EITHER	_	-
			speed of EM waves constant (throughout journey)	1	QWC for correct assumption
			OR		accept travels at the speed of light throughout the journey
			time out same as time back;		ignore references to motion of asteroid
				11	

Question		Answer		Guidance	
10	а	volume = $(12.0 \times (1.2 + 3.2)/2) \times 5.6 = 148 \text{ m}^3$;	1		
		mass = $148 \times 1000 = 1.48 \times 10^5$ kg;	1	accept ecf from incorrect volume for [1]	
				look for 3 s.f. in correct value for mass	
	b	$4.2 \times 10^3 \times 1.48 \times 10^5 \times (30 - 10) = 1.2(4) \times 10^{10} \text{ J};$	1	1.5×10 ⁵ m ³ gives 1.26×10 ¹⁰ J for [1]	
				accept ecf from incorrect mass for [1]	
		any one from	1	accept heater is 100% efficient	
		 no energy transfers from the water 		not uniform temperature, or constant mass	
		 no energy transfers into the heater 		accept heat as energy	
		no evaporation of water owtte		accept no energy loss	
		specific thermal heat capacity independent of			
	· ·				
	CI				
		molecules per kg = $6.0 \times 10^{20} / 1.8 \times 10^{2} = 3.33 \times 10^{20}$;	1		
		energy per molecule = $2.3 \times 10^{\circ} / 3.33 \times 10^{23} = 6.9 \times 10^{220} \text{ J}$	1		
		OR			
		mass of one molecule 1.8×10^{2} / $6.0 \times 10^{20} = 3.00 \times 10^{20}$ kg;			
		energy per molecule = $2.3 \times 10^{\circ} \times 3.00 \times 10^{2\circ} = 6.9 \times 10^{2\circ}$ J;			
		BF is probability that a molecule / fraction of molecules;		accept proportion / ratio / percentage not number	
	ii	can gain enough energy to leave pool / evaporate;	1	OWO for describing male cula callisians	
		through (random) collisions (with other molecules);	1		
		$7.2 \times 10^{-3} = Ce^{-6.9 \times 10^{-20} / 1.4 \times 10^{-20} \times (2/3 + 30)};$	4	award [4] far mathed which would aliminate C ar give it a value	
	iii	$C = 8.34 \times 10^4;$	1	award [1] for method which would eliminate C or give it a value	
		$8.34 \times 10^4 e^{-6.9 \times 10^{-20} / 1.4 \times 10^{-23} \times (273+10)} = 2.28 \times 10^{-3} \text{ kg s}^{-1}$	1	$a_{1} = 10^{-20}$ Lawson C 1.06x10 ⁵ and 2.24x10 ⁻³ kg a^{-1} for [2]	
		Total	11	$\frac{1}{2} = 7 \times 10$ J gives C = 1.00 × 10 and 2.24 × 10 kg s 10 [2]	
		Iotai			
				A design of the second s	

Que	stion	Answer	Marks	Guidance
11	а	repeat the procedure without the protoactinium;	1	accept count rate as activity but not background radiation
		subtract result from recorded value with protoactinium;	1	
	b	$\Delta N_{(-20)}$	1	look for correct use of minus sign in first step
		$A = -\frac{1}{\Delta t} (= \lambda N);$		
		$\Delta = 2N \rho^{-\lambda t}$	1	ignore $A = A_0 e^{-\lambda t}$
		$H = \lambda \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$		·g
		$\ln A = \ln(\lambda N_0) - \lambda t;$	1	correct algebra which ignores the minus sign can earn [2]
	c i	7	3	best straight line through points [1]
				accept any line through majority of points to meet time axis
				between 6.0 and 7.0 minutes
				gradient = $-3.85 / (6.30 \times 60) = -1.02 \times 10^{-2} \text{ s}^{-1} [1]$
		┟┼┼┼┨┼┼┼┝╋╷┼┼┼┨┼┼┼┨┼┼┼┨┼┼┼┼ ┨		accept from -0.90×10 ⁻² s ⁻¹ to -1.1×10 ⁻² s ⁻¹
		_ └┼┼┼╂┼┼┼╂┼┼╎╲ ╋┼┼┼╂┼┼┼╂┼┼┼╂┼┼┼┼┨		half-life = $0.693 / 1.0 \times 10^{-2} = 69 \text{ s} [1]$
				accept from 77 s to 63 s
				allow ect on calculation of half-life from incorrect λ for [1]
		4		
				accept pair of data points from graph and use of $A = Ce^{-\lambda t}$ to
				obtain correct value for [2]
		┟┼┼┼╂┼┼┼╂┼┼┼╂┼┼┼╂┼┼┼╠╁┼┼┤		
		3 <u></u>		
		v 1 2 3 4 5 0 / time/minutes		
		unieminutes		
		radioactive decay is a random process;	1	
	ii	Total	9	

Ques	tion		Answer	Marks	Guidance
12	а	i	 any one from collides with walls with no loss of energy momentum after collision is equal and opposite to momentum before collision velocity after collision is equal and opposite to velocity before collision; 	1	 accept collisions are elastic / no change of speed / no change in magnitude of momentum not moving at right angles to wall
		ii	time between collisions = $\frac{\text{distance to other face and back}}{\text{speed}}$	1	accept travels to right-hand face and back before hitting the left- hand face again owtte not just distance = 2 <i>d</i>
	b	i	$F = \left(\frac{\Delta p}{\Delta t}\right) = \frac{mv^2}{d}$ (for one particle); three pairs of faces / three dimensions of box; so <i>N</i> /3 particles hit left-hand face;	1 1 1	accept three directions in box look for explicit statement, not just algebra
			particles do not collide with each other / have no interaction / have no size / N is a very big number;	1	not same temperature / energy / speed / mass / hit faces at right angles / elastic collisions
	<u>fi</u>		temperature <i>T</i> is proportional to (average) energy of particles;	1	accept energy of a particle is kT not just $\frac{1}{2}mv^2 = \frac{3}{2}kT$ or $\frac{mv^2}{3} = kT$
			then correct manipulation of $\frac{1}{2}mv^2 \propto T$ to achieve $p = \frac{NkT}{V}$;	1	
			Total	9	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 A PART OF THE CAMERIDGE ASSESSMENT

