Oxford Cambridge and RSA

GCE

Chemistry B (Salters)

Unit F335: Chemistry by Design
Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations used in scoris:

Annotation	Meaning
\checkmark	correct response - there must be one tick for every one mark awarded
\mathbf{x}	incorrect response - These should not be used for every mark lost; just use them in places where it makes your marking clearer.
bod	benefit of the doubt given. Please give a tick as well
nbod	benefit of the doubt not given
ECF	error carried forward
\wedge	information omitted
I	Ignored
SEEN	to be used on any other page where there is a response but no other annotation
BP	indicates a blank page that has been checked.
NGE	answer has some merit but doesn't quite score the mark
CON	contradicts a correct response and negates the mark
SF	to draw attention to the significant figures

Subject-specific Marking Instructions that apply across the whole question paper to be included here.
Accept minor mis-spellings where the 'sound' is right (eg 'percipitate'), except:

- QWC mark
- where it changes a technical term (eg alkene/alkane)

If the answer on the answer line (or in box) differs from a previous answer (copying error), mark the answer on the answer line (or in box). If the answer line (or box) is blank, reward the answer elsewhere if possible.

In calculations, rounding errors should not be rewarded, unless the Mark Scheme indicates otherwise. Where a numerical answer is carried forward from a previous part, either the answer in the previous part or the answer left in the calculator may be used.

If it says 'mark separately' marks can be awarded even if the answer does not hang together well without the other mark. However, if the later marking point has words in brackets before it, the mark should only be awarded in the context of those words.

Formulae must have correct brackets and subscripts to score. Element symbols must have small second letters (eg not 'BA'). These errors and the use of a wrong symbol should, if possible, only result in the loss of ONE mark in a part (rather than more marks).

Multiples of equations are acceptable (including halves) unless specified otherwise.
Allow the omission of one plus sign in an equation if the species are still well separated.

MARK SCHEME

Question	Answer	Mark	Guidance
1 a	CO_{2} covalent \checkmark CaO giant ionic \checkmark	2	IGNORE 'molecular', small molecules, etc but any suggestion of a giant structure is CON The words 'giant' and 'ionic' must be there, but other correct chemical words (eg 'lattice' can be ignored) If compounds are not identified, assume order of answers is that of question.
1 b i	+161	1	plus sign must be present
1 b ii	$\begin{aligned} & \Delta S_{\text {tot }}=161-180000 / 298 \\ & =-443 \end{aligned}$	2	Award the following without consulting working: 2 marks for -443 (to 3 or more sf) 1 mark for +160 (.395...) (failure to multiply by 1000) 1 mark for +765 (not 765) (adding not subtracting) ALLOW ecf from 1bi NB Zone for (i) is shown above answer
1 b iii	$T(=180000 / 161)=1118 \mathrm{~K} \checkmark$ (Temperature) above which/at which reaction is feasible ora AW OR temperature at which the system/reaction is at equilibrium	2	ALLOW ecf on 161 from 1(b)(i) and on non-use of 1000 from (b)(ii) (i.e. 1.1 K scores the first mark if (+)160 given in 1 (b)(ii)) IGNORE + sign. ALLOW 2 or more sig figs ALLOW 'spontaneous' or 'favourable' or 'viable' or 'occurs' etc for 'feasible' ALLOW $K_{\mathrm{c}}=1$ Mark separately NB the zones for (i) and (ii) are shown below answer.
1 C i	calcium hydrogencarbonate \checkmark	1	IGNORE gaps and capital letters ALLOW calcium(II) hydrogencarbonate NOT (calcium hydrogen) carbonate(IV) IGNORE 'bicarbonate'
1 c ii	air/atmosphere \checkmark	1	ALLOW 'dissolved in rainwater' (not just 'in rainwater') IGNORE 'from fossil fuels' etc

Question	Answer	Mark	Guidance
1 c iii	CaCO_{3} is formed/ CaCO_{3} is limescale \checkmark Position of equilibrium moves to left/towards reactants \checkmark $\mathrm{Gas} / \mathrm{CO}_{2}$ is released from solution $A W \checkmark$	3	ALLOW water boils away/ is removed IGNORE references to endothermic reaction
1 d	$\begin{gathered} \frac{\mathrm{Ca}^{2+}(\mathrm{g})(+) \mathrm{CO}_{3}^{2-}(\mathrm{g}) \checkmark}{} \\ \frac{\mathrm{CaCO}_{3}(\mathrm{~s}) \checkmark}{\mathrm{Ca}^{2+}(\mathrm{aq})(+) \mathrm{CO}_{3}^{2-}(\mathrm{aq}) / \mathrm{CaCO}_{3}(\mathrm{aq})} \downarrow \\ \Delta H_{\text {hyd }} \mathrm{CO}_{3}^{2-}(\mathrm{aq})=-(2800+12-1650)=-1162 \checkmark \end{gathered}$	4	ALLOW ecf on bottom line from wrong charges on top line IGNORE arrows between levels mark is for final answer (with sign) not working
	Total	16	

	Answer	Mark	Guidance
2 e	1. (substrate is) serotonin \checkmark 2. moclobemide/inhibitor binds with active/receptor site AW \checkmark 3. (moclobemide) blocks (the active/receptor site) OR (moclobemide) competes with the substrate OR substrate cannot bind (as well) / enzyme-substrate complex cannot form (as well) OR fewer/less active sites available for substrate 4. (increased serotonin/substrate concentration allows) increased rate \checkmark	4	ALLOW ' $\left(\mathrm{CH}_{2}\right) \mathrm{NH}_{2}$ group of serotonin' ALLOW 'bonds', 'fits', 'forms complex' instead of 'binds' in 2. ALLOW 'serotonin' for substrate or ecf on substrate name from 1. IGNORE moclobemide reacting with substrate IGNORE reasons
2 f	1. electrons move up(AW) energy levels $\sqrt{\checkmark}$ 2. light/ radiation is absorbed (with frequency related to energy gap by) $\Delta E=h v / h f \checkmark$ 3. complementary colour/frequency... OR colours/frequencies not absorbed... ...are reflected/ transmitted 4. phenelzine has small(er) chromophore/less delocalisation (therefore) larger $\Delta \mathrm{E} /$ energy gap/v/frequency (ora for coloured/'aromatic' molecules) \checkmark 5. uv has higher frequency/ higher energy (than visible light) ora	5	reference to d electrons is CON to this mark only IGNORE 'E=hv' unless 'energy gap/difference' mentioned in close proximity ALLOW 'frequency proportional to energy gap' accept the two parts of 2. if they are separated in the answer. ALLOW 'complimentary' Any reference to electrons falling and giving out/emitting light CONs 3. 4. may be split through answer This can be scored if a reference to phenelzine absorbing in uv immediately follows the second part of 4. ('larger $\Delta E /$ energy gap/v/frequency')
		20	

Question	Answer	Mark	Guidance
3 a i	propene \checkmark	1	NOT prop-1-ene
3 a ii	similarity: C-C bond formed/ C atom attached to benzene OR alkylation OR hydrocarbon (chain)(AW) attached/substituted/added difference: no use of halogen compound OR only one product/ no HCl (or H^{+}) formed/lost \checkmark	2	IGNORE references to alkenes as reactants ALLOW 'eliminated’
3 b i	1. more/greater/higher yield OR more/greater amount of compound B/product \checkmark 2. fewer molecules/particles/moles on right-hand side/product ora \checkmark 3. molecules/particles.... in smaller volume/space (not area) OR ...closer together OR ...more concentrated AW \checkmark 4. greater frequency of collisions AND faster rate (of reaction) AW \checkmark	4	IGNORE 'equilibrium moves to the right' unless it indicates which side has fewer moles QWC marking point 1 depends on marking point 2 being scored 'molecules have increased energy' CONs this point marking points 3 and 4 can be marked separately 4. frequency must be implied (not just 'more collisions') IGNORE 'chance of collision'
3 b ii	(Forward) reaction exothermic (ora) AND equilibrium constant smaller AW \checkmark Rate (too) slow(er)/takes too long to reach equm below 250 AW \checkmark	2	IGNORE 'equilibrium moves to the left' but 'equilibrium moves to left (AW) in endothermic direction' will score first part of marking point. IGNORE 'compromise’
3 b iii	100%, no waste (product) (to be disposed of) \checkmark	2	IGNORE 'high' IGNORE reference to toxic/harmful NOT 'no by-product'

Question	Answer	Mark	Guidance
3 c i	2-hydroxy-2-methylpropan(e)nitrile / (propanone) cyan(o)hydrin HCN/KCN/NaCN	2	IGNORE dashes, commas and spaces ALLOW: - 'hydroxy' and 'methyl' reversed; - 2-cyanopropan-2-ol; - 2-methylpropan-2-olnitrile; - 2-cyano-2-hydroxypropane NOT a mixture of names with 'cyanhydrin' ALLOW CN- and names
3 c ii	alkene / carbon to carbon double bond \checkmark (primary) amide \checkmark	2	IGNORE 'C=C' 'secondary' is CON
3 c iii	methanol / $\mathrm{CH}_{3} \mathrm{OH} \checkmark$	1	
3 c iv	addition (polymerisation) since $\mathrm{C}=\mathrm{C} /$ carbon-carbon double bond/alkene double bond/unsaturated	2	both points needed to score first mark ALLOW ' CH_{3} ' groups not displayed, but everything else must be full structural IGNORE brackets and ' n '
3 d i	electrophilic substitution \checkmark	1	
3 d ii	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCl} \checkmark$	1	ALLOW atoms in any order
3 d iii	$3 \checkmark$	1	
3 e i	three proton/H/hydrogen environments	1	IGNORE ' ${ }^{+\prime}$

Question	Answer	Mark	Guidance
e ii		1	ALLOW hydrogen atoms shown on ring (for part (iii))
e iii	 one mark for labelling G one mark for labelling \mathbf{E} and \mathbf{F} (which can be reversed)	2	If e (ii) is an incorrect isomer, award one mark for G if it labels the OH hydrogen E and F must be indicated on both sides to score second mark.
e iv	Protons are attached to a carbon atom where... OR the proton environment has... ...the adjacent carbon with one proton \checkmark	1	must imply 'adjacent' eg 'neighbouring' etc and mention both carbons (unless 'proton environment' replaces the first carbon) and both protons. ALLOW hydrogen/H (not H^{+}) for 'proton'
3 f	 $\mathrm{I}-\mathrm{Cl}$ polarised since electronegativity difference AW \checkmark I / I $\mathrm{I}^{+} \mathrm{I}^{\delta+} \ldots$ is the electrophile/ is attracted to delocalised electrons/ is attracted to electron density	3	ALLOW formula of any iodophenol but must be monosubstituted NOT hydrogens on the ring here 'addition' is CON
		29	

Question	Answer	Mark	Guidance
4 a	$\mathrm{CaO}+3 \mathrm{C} \rightarrow \mathrm{CO}+\mathrm{CaC}_{2}$ OR $2 \mathrm{CaO}+5 \mathrm{C} \rightarrow \mathrm{CO}_{2}+2 \mathrm{CaC}_{2} \checkmark$	1	IGNORE state symbols
4 b i	$\mathrm{CaCN}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NH}_{3} \checkmark \checkmark$	2	For one mark: - correct substances but unbalanced equation - the correct balanced equation with an error (eg $\left.\mathrm{Ca}\left(\mathrm{CO}_{3}\right)\right)$ - $\mathrm{CaCN}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}+2 \mathrm{NH}_{3}$ - $\mathrm{CaCN}_{2}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2}+2 \mathrm{NH}_{3}$
4 b ii	(nitrogen is unreactive/inert) (nitrogen) has a (strong) triple bond ($\overline{\mathrm{F} N} \mathrm{~N}$) \checkmark OR high (AW) (activation) energy/enthalpy... ... to break bond	1	
4 b iii	nitrogen compounds are needed (by plants) for: growth/ making protein/ making amino acids/DNA \checkmark	1	ALLOW for 'nitrogen compounds': named (appropriate) nitrogen compounds or 'nitrates' or 'ammonium ions' (or formulae) IGNORE references to fertilisers
4 b iv	($28 \times 100 / 80.1$ =) $35.0 \% \checkmark$ to 3sf \checkmark	2	Any answer that rounds to 35 scores first mark Second mark is for correct answer to 3sf i.e. 35.0
4 c i	$-3+2 \checkmark$	1	signs must precede numbers
4 c ii	nitrogen monoxide \checkmark	1	ALLOW nitrogen(II) oxide (allow gaps), NOT nitrogen(II) monoxide no ecf from (c)(i)
4 c iii	$\begin{aligned} & (50-4 x)+(50-5 x)+4 x+6 x=105 \\ & x=5 \\ & \% \text { conversion }=(20 \times 100 / 50)=40 \% \checkmark \checkmark \end{aligned}$	2	40% on answer line scores 2 marks without reference to working. ALLOW, for 1 mark, one of: - $(50-4 \mathrm{x})+(50-5 \mathrm{x})+4 \mathrm{x}+6 \mathrm{x}=105$ - $(50-x)+(50-1.25 x)+x+1.5 x=105$ - $20 \mathrm{~cm}^{3}$ of NH_{3} reacted OR $30 \mathrm{~cm}^{3}$ of NH_{3} left

Question	Answer	Mark	Guidance
4 c iv	NO is oxidised by oxygen / reacts with oxygen to form $\mathrm{NO}_{2} \checkmark$ NO_{2} is brown \checkmark	2	ALLOW 'it' for 'NO'
$4 \quad d \quad i$	$\begin{array}{r} 180\left({ }^{\circ}\right)^{\checkmark} \\ \mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{H} \checkmark \end{array}$	2	Structure mark can be awarded if not linear Angle mark depends on: - correct structure being given. - structure being linear - curve indicating the angle starting and finishing on bonds rather than an atom Give benefit of doubt on rubbed out structures where possible (also in following parts)
$\begin{array}{lll} \hline 4 & d & i i \end{array}$	 ring of eight carbons \checkmark correct double bonds \checkmark	2	If a correct non-skeletal structural formula is given, award one mark only. Do not award either mark if there are any extra carbons on ring. Second mark depends on first.
$4 \quad d \quad i i i$		1	must be skeletal to score
4 e i	$\mathrm{Ca}_{3} \mathrm{P}_{2} \checkmark$	1	
$\begin{array}{lll} \hline 4 & \text { e } & i i \end{array}$		1	

Question	Answer	Mark	Guidance
4 e iii	1.ammonia/ NH_{3} (not just N) forms hydrogen bonds with/in water ${ }^{\checkmark}$ 2.phosphane/ PH_{3} (not just P) forms id-id bonds with/in water 3.P is less electronegative (than N) ora \checkmark 4. consideration of relative energies more energy is needed to break the hydrogen bonds in water than is released/made by making the imb/named imb (between phosphane and water) OR hydrogen bonds in water are stronger than imb/named imb (between phosphane and water) OR similar energy is needed to break the hydrogen bonds in water than is released/made by forming the hydrogen bonds (between) ammonia (and water) OR hydrogen bonds in water are of similar strength(AW) to those (between) ammonia (and water). \checkmark	4	ALLOW forms no/weaker hydrogen bonds OR forms permanent dipole-permanent dipole bonds/ forms Van der Waals ALLOW abbreviations/spelling errors and 'forces' for 'bonds' IGNORE 'more energy is needed to break the hydrogen bonds in water than is needed to break the imb' etc 'in water' must be stated or implied IGNORE reference to number of bonds broken and made ALLOW statements that suggest that the hydrogen bonding in water is weaker than that between ammonia and water
		24	

Question	Answer	Mark	Guidance
5 a	methylpropanoic acid / 2-methylpropanoic acid \checkmark	1	IGNORE gaps and dashes
$5 \quad \mathrm{~b} \quad \mathrm{i}$	 backbone and ester groups displayed \checkmark $\mathrm{C}_{3} \mathrm{H}_{7}$ groups displayed \checkmark	2	ester groups wrong way round scores zero
$5 \quad \mathrm{~b} \quad \mathrm{ii}$	No carbon-carbon double bonds/ No C=C OR all C-C bonds are single \checkmark	1	Not just 'double bonds' for ' $\mathrm{C}=\mathrm{C}$ '
5 c i	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \checkmark$	1	State symbols required ALLOW $\mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \rightleftharpoons \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ ALLOW $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}^{-}$or $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2}^{-}$for $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}^{-}$
5 c ii	Weak acid/ incompletely ionised/ incompletely dissociated \checkmark	1	
5 C iii	No/not enough... $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$ions/ protons \checkmark $\left(\mathrm{H}^{+}\right)$react (with carbonate)	2	ALLOW 'needs water to ionise' for first mark Second mark depends on first

Question	Answer	Mark	Guidance
5 c iv	1. (added) $\mathrm{H}^{+} /$acid... ...reacts with (AW) $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}^{-}$ ORmoves equilibrium to left and forms acid \checkmark 2. (added) $\mathrm{OH}^{-} /$alkali/ (sodium)hydroxide... ...reacts with (AW) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} / \mathrm{H}^{+}$ ORmoves equilibrium to right to replace $\mathrm{H}^{+} /$butanoic acid dissociates/ionises \checkmark 3. $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}^{-}$(concentration) and $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (concentration) large/ reservoir/ in excess $A W \checkmark$ 4. pH does not change (much) \checkmark	4	ALLOW A' or 'salt' or 'anion' or 'butanoate' or '(conjugate) base' or ecf from(c)(i)* for $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}^{-}$throughout ALLOW HA or '(butanoic) acid' or ecf from(c)(i)* for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ throughout IGNORE 'base' for 'alkali' (added) References to large amounts/reserves of H^{+}or OH^{-}are CON *NB the zone for 5(c)(i) is given below the answer if needed.
5 d i	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\left(\sqrt{ }\left(1.51 \times 10^{-5} \times 0.02\right)\right)=5.5(0) \times 10^{-4} \checkmark} \\ & \mathrm{pH}=3.26 \checkmark \end{aligned}$	2	Any pH value rounding to 3.3 scores 2 ALLOW ecf for second mark if $\left[\mathrm{H}^{+}\right]<0.02$ To score either mark alone, first mark must include ' $\left[\mathrm{H}^{+}\right]=$' or ' $\mathrm{H}^{+}=$'
$5 \quad$ d ii	1. calculation of $\left[\mathrm{OH}^{-}\right]$ $\left[\mathrm{OH}^{-}\right]=5 \times 0.02 / 55=1.82 \times 10^{-3} \checkmark$ 2. calculation of $\left[\mathrm{H}^{+}\right]$from $\left[\mathrm{OH}^{-}\right]$ $\left[\mathrm{H}^{+}\right]=1 \times 10^{-14} /$ 'calculated $\left[\mathrm{OH}^{-}\right]$' eg $1 \times 10^{-14} / 1.82 \times 10^{-3}=5.49 \times 10^{-12} \checkmark$ 3. calculation of pH from $\left[\mathrm{H}^{+}\right]$ $\mathrm{pH}=11.3 \checkmark$	3	Allow the following answers (to 1dp) without reference to working: 3 marks: 11.3 2 marks: 12.0 (just dilution of NaOH) 2 marks: 12.3 (pH of 0.02 M NaOH Either working or values score first two marks ALLOW ecf for second mark provided ' $\left[\mathrm{OH}^{-}\right] / \mathrm{OH}^{-}=$' shown ALLOW ecf for third mark if ' $\left[\mathrm{H}^{+}\right] / \mathrm{H}^{+}=$' shown and value is $<1 \times 10^{-10}$
5 e i		1	OR other way round bond angles can vary

Question	Answer	Mark	Guidance
5 e ii	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCl} \checkmark$	1	ALLOW any correct structural or skeletal formula or mixture IGNORE $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COCl}$ (chain could be branched)
5 e iii	permanent (dipole)-permanent dipole AND instantaneous (dipole)-induced dipole acid has hydrogen bonding \checkmark more energy required to separate particles/break bonds in acid (ora) so ester has lower bpt (ora) \checkmark	3	type of imb must not be abbreviated or mis-spelled (QWC) 'hydrogen bonding' CONs first mark
5 f i	$\begin{aligned} & \bullet \ddot{\mathrm{O}} \pm \mathrm{H} \\ & \text { unpaired electron } \checkmark \end{aligned}$	2	IGNORE 'lone’, ‘single’, ‘unbonded’ Mark separately
5 f ii		1	arrows must be 'half-arrows' and (when projected) start on bond and end on atoms
5 f iii	homolytic (fission) \checkmark	1	ALLOW homolysis
5 f iv	only 5.4 initiation \checkmark rest propagation \checkmark	2	mark separately
5 f v	$\mathrm{O}_{2}+\mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\rightarrow \mathrm{R}-\mathrm{CH}(\mathrm{OOH})-\mathrm{CH}_{2}-\checkmark$	1	ALLOW R-C $(\mathrm{OOH}) \mathrm{H}-\mathrm{CH}_{2}-$ but end bonds must be there

Question	Answer	Mark	Guidance
$\mathbf{5 \quad f \quad \mathbf { v i }}$	aldehyde \checkmark ((conc) sulfuric/hydrochloric) acid AND (potassium/sodium) dichromate AND heat/warm/reflux/distil AND green/ blue \checkmark	$\mathbf{2}$	ALLOW alkanal IGNORE carbonyl

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

