

A-level Chemistry (7405/2)

Paper 2: Organic and Physical Chemistry

Specimen 2015 v0.5

Session

2 hours

Materials

For this paper you must have:

- · the Data Booklet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer all questions.
- Show all your working.

Information

• The maximum mark for this paper is 105.

Please write cle	arly, ir	n blo	ock	сар	itals	s, to	allo	w c	char	act	er (con	npu	ıter	rec	cog	niti	on.			
Centre number						Cai	ndic	date	nu	mb	er										
Surname																					
Forename(s)																					
Candidate signa	ature ₋																				ر .

Barcode vo.5 7405/2

Answer **all** questions.

1 This question involves the use of kinetic data to deduce the order of a reaction and calculate a value for a rate constant.

The data in **Table 1** were obtained in a series of experiments on the rate of the reaction between compounds **A** and **B** at a constant temperature.

Table 1

Experiment	Initial concentration of A / mol dm ⁻³	Initial concentration of B / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.12	0.26	2.10×10^{-4}
2	0.36	0.26	1.89×10^{-3}
3	0.72	0.13	3.78×10^{-3}

0 1 . 1	Show how these data can be used to deduce the rate expression for the relative between A and B .	eaction

The data in **Table 2** were obtained in two experiments on the rate of the reaction between compounds **C** and **D** at a constant temperature.

Table 2

Experiment	Initial concentration of C / mol dm ⁻³	Initial concentration of D/ mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
4	1.9×10^{-2}	3.5×10^{-2}	7.2×10^{-4}
5	3.6 × 10 ⁻²	5.4 × 10 ⁻²	To be calculated

The rate equation for this reaction is

$$rate = k[\mathbf{C}]^2[\mathbf{D}]$$

0	1	2	Use the data from experiment $\bf 4$ to calculate a value for the rate constant, $\bf k$, at	this
			temperature. Deduce the units of <i>k</i> .	
			[3 ma	rksl

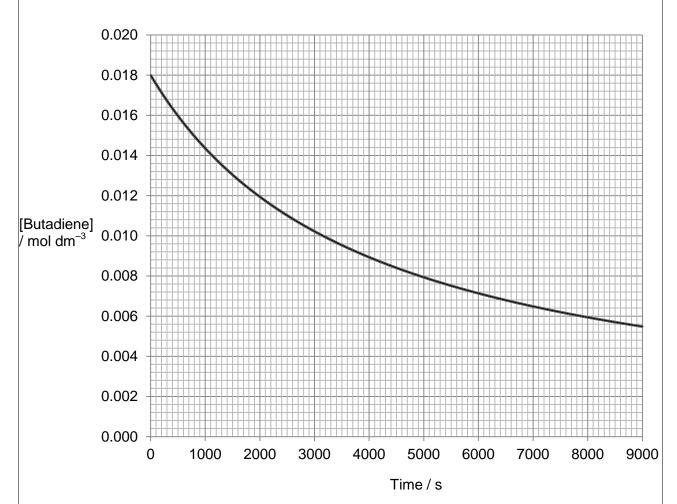
k = _____ Units = ____

0 1 . 3 Calculate a value for the initial rate in experiment 5. [1 mark]

Initial rate = $\mod \text{dm}^{-3} \text{ s}^{-1}$

Question 1 continues on the next page

0 1 . 4	The rate equation for a reaction is	
	rate = k[E]	
	Explain qualitatively why doubling the temperature has a much greater ef the rate of the reaction than doubling the concentration of E .	fect on [3 marks]
0 1 . 5	A slow reaction has a rate constant $k = 6.51 \times 10^{-3} \text{ mol}^{-1} \text{ dm}^3$ at 300 K. Use the equation ln $k = \ln A - E_a/RT$ to calculate a value, in kJ mol ⁻¹ , for activation energy of this reaction.	the
	The constant $A = 2.57 \times 10^{10} \text{ mol}^{-1} \text{ dm}^3$. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	[2 marks]
	Activation energy =	



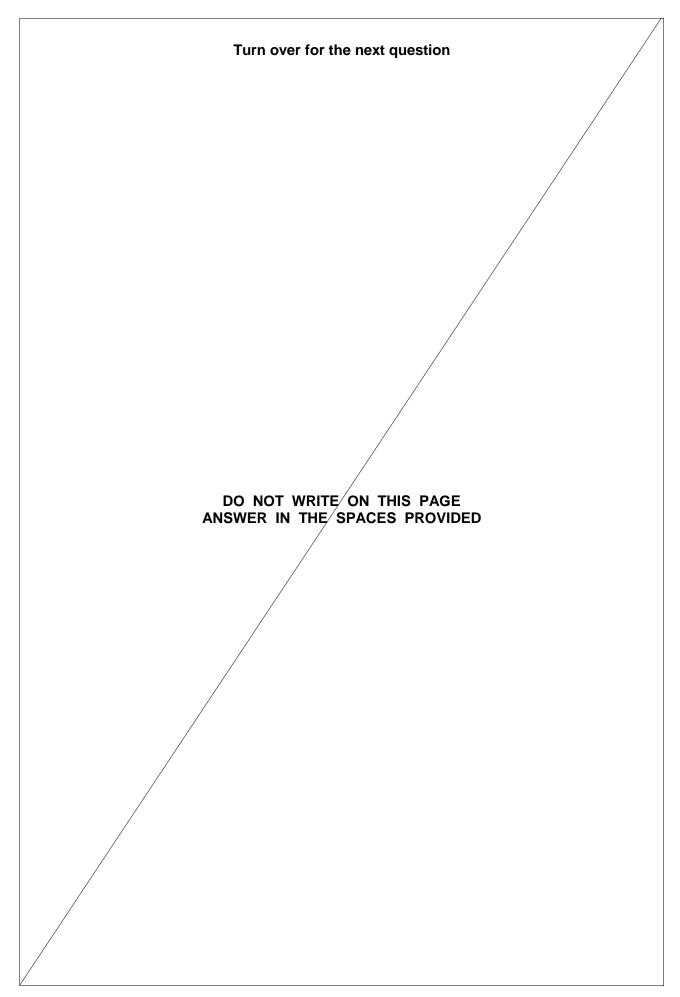
2 Butadiene dimerises according to the equation

$$2C_4H_6 \longrightarrow C_8H_{12}$$

The kinetics of the dimerisation are studied and the graph of the concentration of a sample of butadiene is plotted against time. The graph is shown in **Figure 1**.

Figure 1

0 2 • **1** Draw a tangent to the curve when the concentration of butadiene is 0.0120 mol dm⁻³.

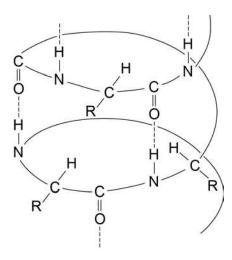

[1 mark]

0 2 . 2	The initial rate of reaction in this experiment has the value 4.57×10^{-6} mol dm ⁻³ s ⁻¹ .	
	Use this value, together with a rate obtained from your tangent, to justify the order of the reaction is 2 with respect to butadiene.	at the marks]
	Turn over for the next question	

3	Isooctane (C ₈ H ₁₈) burns smoothly in Figure 2 .					
		Fi	gure 2			
0 3 . 1	Give the IUPAC n	ame for isooc	tane.			[1 mark]
0 3 . 2	Deduce the numb	er of peaks in	the ¹³ C NMI	R spectrum of	isooctane.	[1 mark]
_	nswer is allowed. fill in the circle alor	ngside the app	oropriate ans	wer.		
CORRECT METH	OD WRONG M	ETHODS 🗴				
	to change your ans o return to an ansv					
30.001.00.0.						
	5	0				
	6	0				
	7	0				
	8	0				

		1
0 3 . 3	Isooctane can be formed, together with propene and ethene, in a reaction one molecule of an alkane that contains 20 carbon atoms is cracked.	in which
	Using molecular formulas, write an equation for this reaction.	[1 mark]
0 3 . 4	How do the products of the reaction in Question 3.3 show that the reaction example of thermal cracking?	is an [1 mark]
0 3 . 5	Deduce the number of monochloro isomers formed by isooctane. Draw the structure of the monochloro isomer that exists as a pair of optical isomers.	2 marks]
	Number of monochloro isomers	z markoj
	Structure	
0 3 . 6	An isomer of isooctane reacts with chlorine to form only one monochloro compound.	
	Draw the skeletal formula of this monochloro compound.	[1 mark]
	Question 3 continues on the next page	

0 3 . 7	A sample of a monochlorooctane is obtained from a comet. The chlorine in the monochlorooctane contains the isotopes 35 Cl and 37 Cl in the ratio 1.5 : 1.0 Calculate the $M_{\rm r}$ of this monochlorooctane. [2 marks]
0 3 . 8	Isooctane reacts with an excess of chlorine to form a mixture of chlorinated compounds. One of these compounds contains 24.6% carbon and 2.56% hydrogen by mass. Calculate the molecular formula of this compound. [3 marks]
	Molecular formula =



4	Alcohol A (CH ₃) ₂ CHCH(OH)CH ₃ undergoes reactions separately with acic potassium dichromate(VI) and with concentrated sulfuric acid.	lified
0 4 . 1	Deduce the IUPAC name for alcohol A .	[1 mark]
0 4 . 2	Draw the structure of the organic product, B , formed when A is oxidised in reaction with acidified potassium dichromate(VI).	the [1 mark]
0 4 . 3	Two isomeric alkenes, C and D , are formed when A is dehydrated in the rwith concentrated sulfuric acid. Name the mechanism for this dehydration reaction.	eaction [1 mark]
0 4 . 4	Draw the structure of each isomer.	2 marks]
	Isomer C Isomer D	

0	4 .	5	Name the type of structural isomerism shown by C and D .	[1 r	mark]
0	4 .	6	List alcohol A , product B and isomer C in order of increasing boiling point.		nark]
0	4 .	7	Draw the structure of the isomer of A that is not oxidised by acidified potassium dichromate(VI).	[1 ɪ	mark]
0	4 .	8	Draw the structure of the isomer of A that cannot be dehydrated to form a by reaction with concentrated sulfuric acid.		kene mark]
			Turn over for the next question		

Figure 3 shows a simplified representation of the arrangement of some amino acids in a portion of a protein structure in the form of an α -helix.

Figure 3

0	5] .	1	Name the type of protein structure in Figure 3	3
---	---	-----	---	--	---

[1 mark]

0	5	2	Explain the origin of the interaction represented by the dotted lines in Figure 3.
			[4 marks]

The tripeptide shown in **Figure 4** is formed from the amino acids glycine, threonine and lysine.

Figure 4

0 6 . 1 Draw a separate circle around **each** of the asymmetric carbon atoms in the tripeptide in **Figure 4**.

[1 mark]

0 6 . 2 Draw the zwitterion of glycine.

[1 mark]

0 6 . 3 Draw the structure of the species formed when glycine reacts with an excess of bromomethane.

[1 mark]

0 6 . 4 Deduce the IUPAC name of threonine.

[1 mark]

0 6 . 5 Draw the structure of the species formed by lysine at low pH.

[1 mark]

7	Repeating units of two	polymers. P and Q .	are shown in Figure 5.
•	repoduling drints of two	polymoro, r ama 🗨,	are onewir in i igaic o.

Figure 5

0	7	1	Draw the structure of the monomer used to form polymer P
			Name the type of polymerisation involved.

[2 marks]

Monomer

Type of polymerisation _

0 7 . 2 Draw the structures of **two** compounds that react together to form polymer Q. [2 marks]

Structure of compound 1

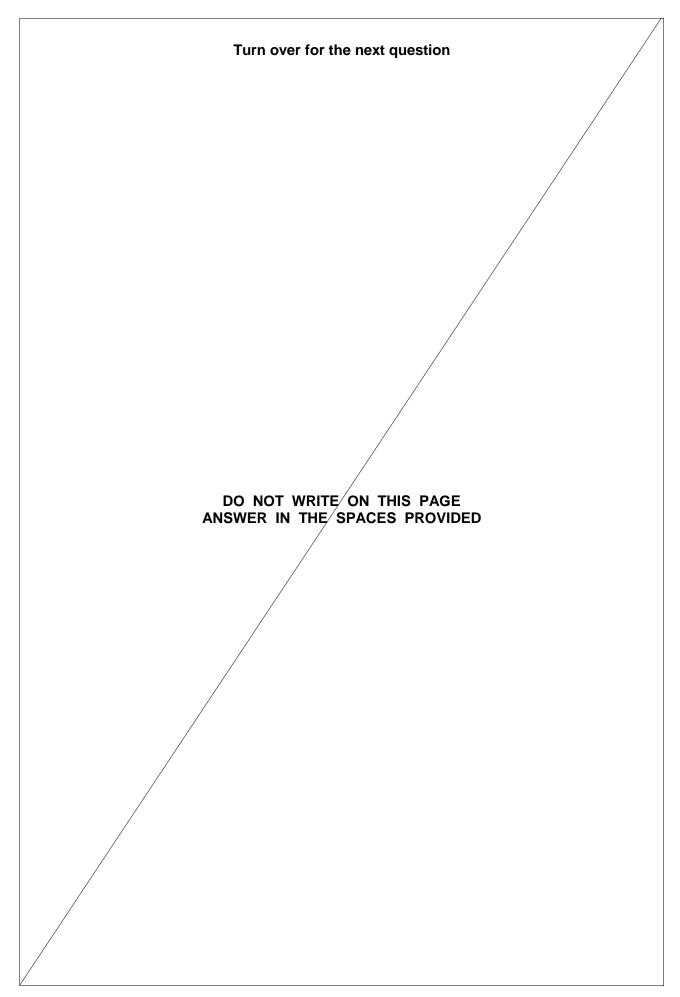
Structure of compound 2

0 7 . 3	Suggest an environmental advantage of polymer Q over polymer P .	
	Justify your answer.	[3 marks]
	Advantage	
	Justification	
	Turn over for the next question	

8 The anticancer drug cisplatin operates by reacting with the guanine in DNA.

Figure 6 shows a small part of a single strand of DNA. Some lone pairs are shown.

Figure 6


0 8 . 1 The DNA chain continues with bonds at X and Y.

State the name of the sugar molecule that is attached to the bond at X.

[1 mark]

Messenger RNA is synthesised in c The bases in one strand of DNA pa		
Figure 7 shows two bases used in	RNA.	
Figur	e 7	
H—N N N [rest of molecule]		[rest of molecule]
Base A	Base B	
Suggest which of the bases A and I messenger RNA is synthesised. Explain how the base that you have		
Question 8 continues	s on the next page	

08.3	Cisplatin works because one of the atoms on guanine can form a co-ordinate bond with platinum, replacing one of the ammonia or chloride ligands. Another atom on another guanine can also form a co-ordinate bond with the same platinum by replacing another ligand.
	On Figure 6 , draw a ring round an atom in guanine that is likely to bond
	to platinum. [1 mark]
08.4	An adverse effect of cisplatin is that it also prevents normal healthy cells from replicating.
	Suggest one way in which cisplatin can be administered so that this side effect is
	minimised. [1 mark]

9 1,4-diaminobenzene is an important intermediate in the production of polymers such as Kevlar and also of polyurethanes, used in making foam seating.

A possible synthesis of 1,4-diaminobenzene from phenylamine is shown in **Figure 8**.

Figure 8

0 9 . 1 A suitable reagent for step 1 is CH₃COCI

Name and draw a mechanism for the reaction in step 1.

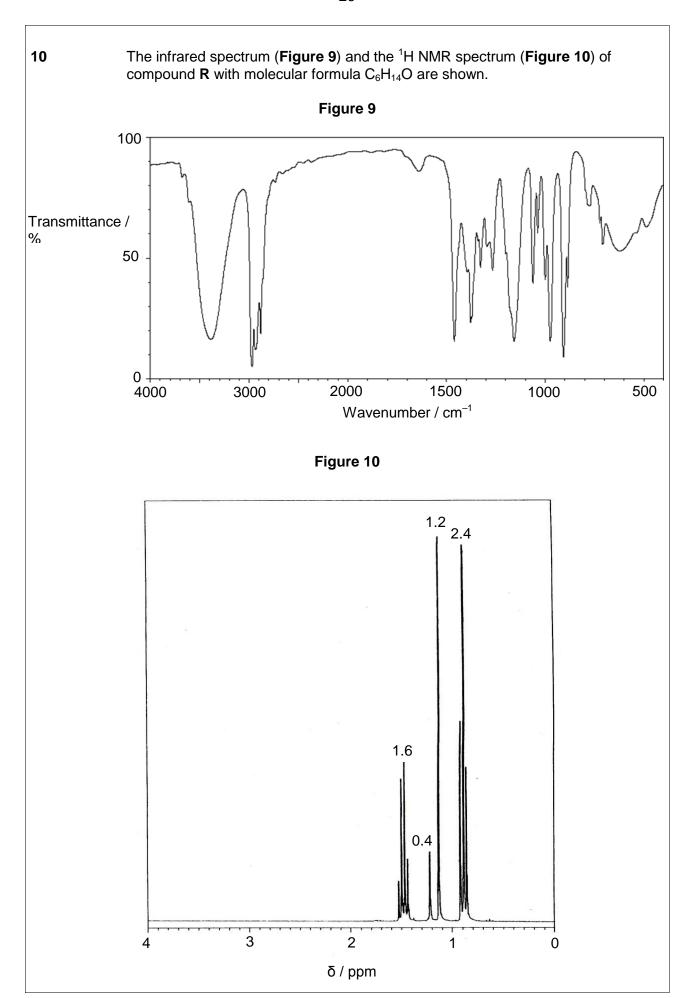
[5 marks]

Name of mechanism _

Mechanism

0 9 . 2	The product of step 1 was purified by recrystallisation as follows.
	The crude product was dissolved in the minimum quantity of hot water and the hot solution was filtered through a hot filter funnel into a conical flask. This filtration removed any insoluble impurities. The flask was left to cool to room temperature.
	The crystals formed were filtered off using a Buchner funnel and a clean cork was used to compress the crystals in the funnel. A little cold water was then poured through the crystals. After a few minutes, the crystals were removed from the funnel and weighed.
	A small sample was then used to find the melting point.
	Give reasons for each of the following practical steps. [4 marks]
	The minimum quantity of hot water was used
	The flask was cooled to room temperature before the crystals were filtered off
	The crystals were compressed in the funnel
	A little cold water was poured through the crystals
	Question 9 continues on the next page

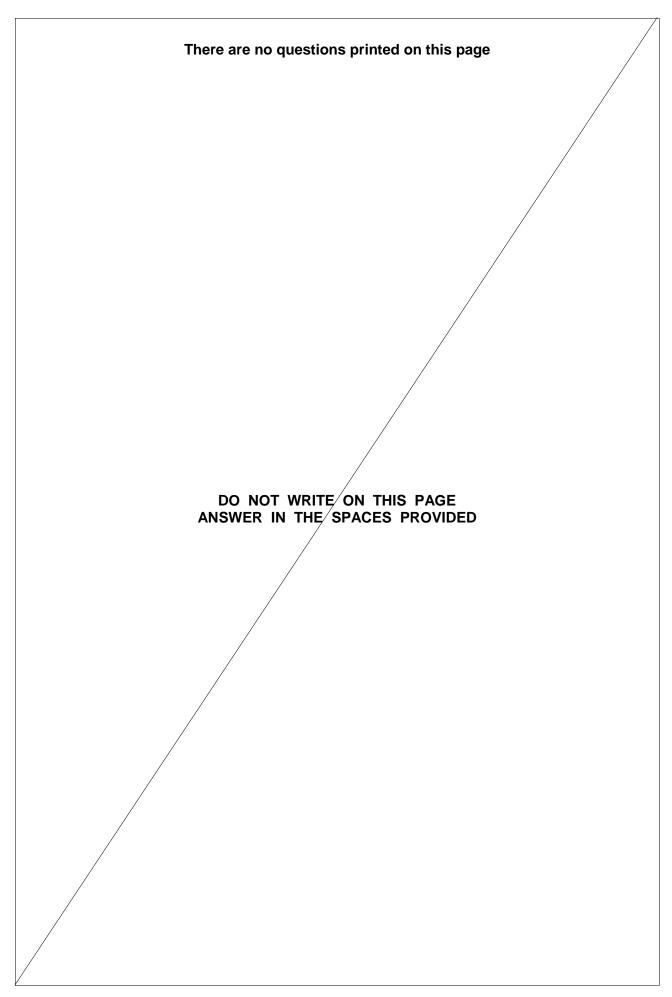
0 9 . 3 The melting point of the sample in Question 9.2 was found to be slightly lower than a data-book value.

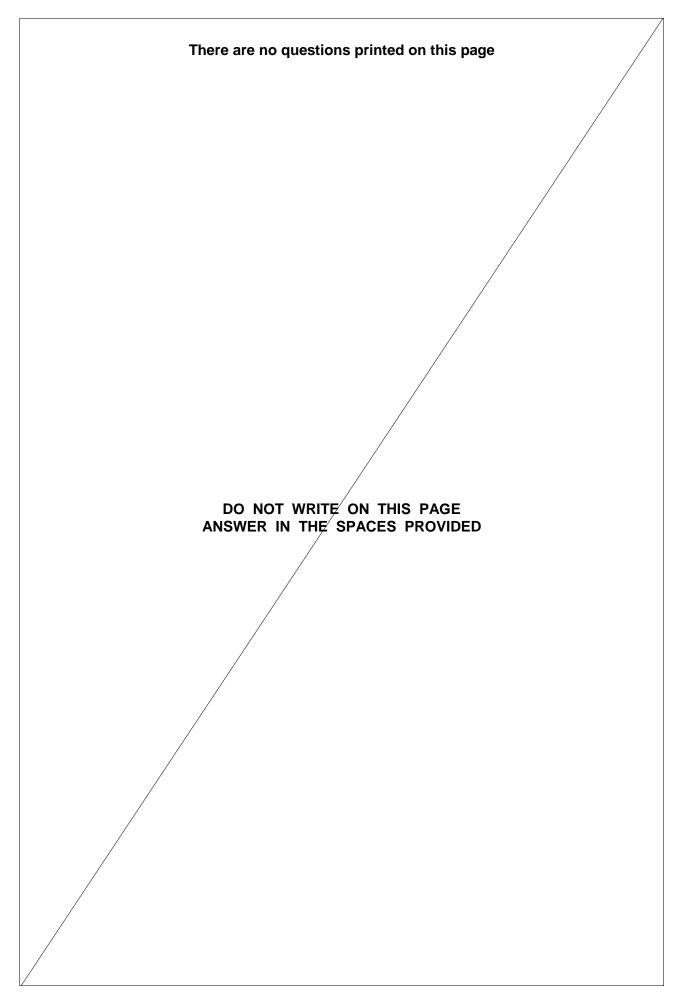

Suggest the most likely impurity to have caused this low value and an improvement to the method so that a more accurate value for the melting point would be obtained.

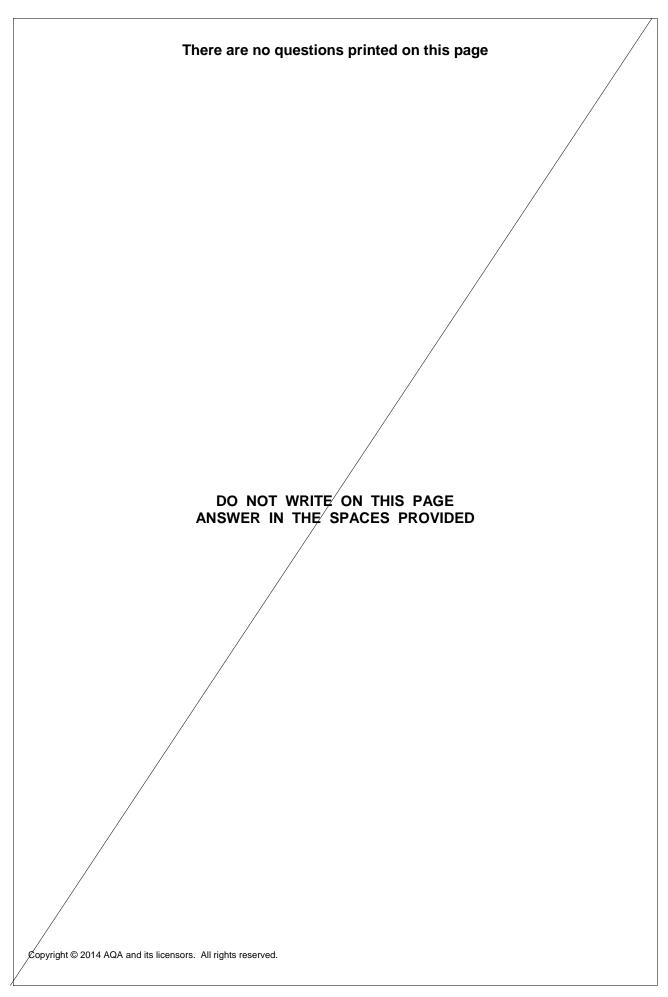
[2 marks]

Figure 8 is repeated here to help you answer the following questions.

Figure 8


0 9 . 4	In an experiment starting with 5.05 g of phenylamine, 4.82 g of purified produce obtained in step 1. Calculate the percentage yield in this reaction. Give your answer to the appropriate number of significant figures.	duct
	[3	marks]
	Percentage yield =	%
0 9 . 5	sulfuric acid, which react together to form a reactive intermediate. Write an equation for the reaction of this intermediate in step 2.	d 1 mark]
09.6	Name a mechanism for the reaction in step 2.	1 mark]
0 9 . 7	Suggest the type of reaction occurring in step 3.	1 mark]
0 9 . 8	Identify the reagents used in step 4.	1 mark]




1 0	The relative integration values for the NMR peaks are shown on Figure 1	0.
	Deduce the structure of compound R by analysing Figure 9 and Figure 1 Explain each stage in your deductions.	0.
	Use Table A and Table B on the Data Sheet.	[8 marks]
	Turn over for the next question	

11	Butanone is reduced in a two-step reaction using NaBH ₄ followed by
	dilute hydrochloric acid.
1 1 . 1	Write an overall equation for the reduction of butanone using [H] to represent the reductant.
	[1 mark]
1 1 . 2	By considering the mechanism of the reaction, explain why the product has
	no effect on plane polarised light. [6 marks]

12	But-1-ene reacts with a reagent of the form HY to form a saturated compound.
1 2 . 1	Suggest a reagent of the form HY which reacts with but-1-ene. [1 mark]
1 2 . 2	Name and draw a mechanism for the reaction in Question 12.1. [5 marks]
	Name of mechanism
	Mechanism
1 2 . 3	Explain how three isomeric products are formed when HY reacts with but-1-ene. [3 marks]
	END OF QUESTIONS

