Paper 2: Core Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs
1(i)	$\alpha + \beta + \gamma = 8$, $\alpha\beta + \beta\gamma + \gamma\alpha = 28$, $\alpha\beta\gamma = 32$	B1	3.1a
	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta \gamma + \alpha \gamma + \alpha \beta}{\alpha \beta \gamma}$	M1	1.1b
	$=\frac{7}{8}$	A1ft	1.1b
		(3)	
(ii)	$(\alpha+2)(\beta+2)(\gamma+2) = (\alpha\beta+2\alpha+2\beta+4)(\gamma+2)$	M1	1.1b
	$= \alpha\beta\gamma + 2(\alpha\beta + \alpha\gamma + \beta\gamma) + 4(\alpha + \beta + \gamma) + 8$	A1	1.1b
	=32+2(28)+4(8)+8=128	A1	1.1b
		(3)	
	Alternative:		
	$(x-2)^3 - 8(x-2)^2 + 28(x-2) - 32 = 0$	M1	1.1b
	$= \dots - 8 + \dots - 32 + \dots - 56 - 32 = -128$	A1	1.1b
	$\therefore (\alpha+2)(\beta+2)(\gamma+2)=128$	A1	1.1b
		(3)	
(iii)	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$	M1	3.1a
	$=8^2-2(28)=8$	A1ft	1.1b
		(2)	

(8 marks)

Notes:

(i)

B1: Identifies the correct values for all 3 expressions (can score anywhere)

M1: Uses a correct identity

A1ft: Correct value (follow through their 8, 28 and 32)

(ii)

M1: Attempts to expand

A1: Correct expansion

A1: Correct value

Alternative:

M1: Substitutes x - 2 for x in the given cubic

A1: Calculates the correct constant term

A1: Changes sign and so obtains the correct value

(iii)

M1: Establishes the correct identity

A1ft: Correct value (follow through their 8, 28 and 32)

Question	Scheme	Marks	AOs
2(a)	$ \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 2 \\ 12 \end{pmatrix} = 18 - 8 + 24 $	M1	3.1a
	$d = \frac{18 - 8 + 24 - 5}{\sqrt{3^2 + 4^2 + 2^2}}$	M1	1.1b
	$=\sqrt{29}$	A1	1.1b
		(3)	
(b)	$\begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} = \dots \text{ and } \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} = \dots$	M1	2.1
	$\begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} = 0 \text{ and } \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} = 0$	A1	2.2a
	∴ $-\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ is perpendicular to Π_2	(2)	
		(2)	
(c)	$ \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = -3 + 12 + 2 $	M1	1.1b
	$\sqrt{(-1)^2 + (-3)^2 + 1^2} \sqrt{(3)^2 + (-4)^2 + 2^2} \cos \theta = 11$ $\Rightarrow \cos \theta = \frac{11}{\sqrt{(-1)^2 + (-3)^2 + 1^2}} \sqrt{(3)^2 + (-4)^2 + 2^2}$	M1	2.1
	So angle between planes $\theta = 52^{\circ} *$	A1*	2.4
		(3)	

(8 marks)

Notes:

(a)

M1: Realises the need to and so attempts the scalar product between the normal and the position vector

M1: Correct method for the perpendicular distance

A1: Correct distance

(b)

M1: Recognises the need to calculate the scalar product between the given vector and both direction vectors

A1: Obtains zero both times and makes a conclusion

(c)

M1: Calculates the scalar product between the two normal vectors

M1: Applies the scalar product formula with their 11 to find a value for $\cos \theta$

A1*: Identifies the correct angle by linking the angle between the normal and the angle between the planes

Question	Scheme	Marks	AOs
3(i)(a)	$ \mathbf{M} = 2(1+2) - a(-1-1) + 4(2-1) = 0 \Rightarrow a =$	M1	2.3
	The matrix M has an inverse when $a \neq -5$	A1	1.1b
		(2)	
(b)	Minors: $\begin{pmatrix} 3 & -2 & 1 \\ -a-8 & 2 & a+4 \\ 4-a & -6 & -2-a \end{pmatrix}$ or $\begin{pmatrix} 3 & 2 & 1 \\ a+8 & 2 & -a-4 \\ 4-a & 6 & -2-a \end{pmatrix}$	B1	1.1b
	$\mathbf{M}^{-1} = \frac{1}{ \mathbf{M} } \operatorname{adj}(\mathbf{M})$	M1	1.1b
	$\mathbf{M}^{-1} = \frac{1}{2a+10} \begin{pmatrix} 3 & a+8 & 4-a \\ 2 & 2 & 6 \\ 1 & -a-4 & -2-a \end{pmatrix}$ 2 correct rows or columns. Follow through their det M All correct. Follow	A1ft	1.1b
		A1ft	1.1b
		(4)	
(ii)	When $n = 1$, lhs = $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$, rhs = $\begin{pmatrix} 3^1 & 0 \\ 3(3^1 - 1) & 1 \end{pmatrix}$ = $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$ So the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^k = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix}$	M1	2.4
	$ \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix} $	M1	2.1
	$= \begin{pmatrix} 3 \times 3^k & 0 \\ 3 \times 3 \left(3^k - 1\right) + 6 & 1 \end{pmatrix}$	A1	1.1b
	$= \begin{pmatrix} 3^{k+1} & 0 \\ 3(3^{k+1} - 1) & 1 \end{pmatrix}$	A1	1.1b
	If the statement is true for $n = k$ then it has been shown true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all positive integers n	A1	2.4
		(6)	
		(12 n	narks)

Question 3 notes:

(i)(a)

M1: Attempts determinant, equates to zero and attempts to solve for a in order to establish the restriction for a

A1: Provides the correct condition for a if M has an inverse

(i)(b)

B1: A correct matrix of minors or cofactorsM1: For a complete method for the inverse

A1ft: Two correct rows following through their determinant A1ft: Fully correct inverse following through their determinant

(ii)

B1: Shows the statement is true for n = 1

M1: Assumes the statement is true for n = k

M1: Attempts to multiply the correct matrices

A1: Correct matrix in terms of k

A1: Correct matrix in terms of k + 1

A1: Correct complete conclusion

Question	Scheme	Marks	AOs
4(a)	$z^{n} + z^{-n} = \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta$	M1	2.1
	$=2\cos n\theta^*$	A1*	1.1b
		(2)	
(b)	$\left(z+z^{-1}\right)^4=16\cos^4\theta$	B1	2.1
	$\left(z+z^{-1}\right)^4 = z^4 + 4z^2 + 6 + 4z^{-2} + z^{-4}$	M1	2.1
	$= z^4 + z^{-4} + 4(z^2 + z^{-2}) + 6$	A1	1.1b
	$= 2\cos 4\theta + 4(2\cos 2\theta) + 6$	M1	2.1
	$\cos^4 \theta = \frac{1}{8}(\cos 4\theta + 4\cos 2\theta + 3)^*$	A1*	1.1b
		(5)	

(7 marks)

Notes:

(a)

M1: Identifies the correct form for z^n and z^{-n} and adds to progress to the printed answer

A1*: Achieves printed answer with no errors

(b)

B1: Begins the argument by using the correct index with the result from part (a)

M1: Realises the need to find the expansion of $(z+z^{-1})^4$

A1: Terms correctly combined

M1: Links the expansion with the result in part (a)

A1*: Achieves printed answer with no errors

Question	Scheme	Marks	AOs
5(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sin x \cosh x \cos x \sinh x$	M1	1.1a
	$\frac{d^2 y}{dx^2} = \cos x \cosh x + \sin x \sinh x + \cos x \cosh x - \sin x \sinh x$ $(= 2\cos x \cosh x)$	M1	1.1b
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = -2\cos x \sinh x 2\sin x \cosh x$	M1	1.1b
	$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} = 4 \sinh x \sin x \qquad 4y^* \qquad = \qquad -$	A1*	2.1
		(4)	
(b)	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_0 = 2, \left(\frac{\underline{\mathrm{d}^6 y}}{\underline{\mathrm{d}x^6}}\right)_0 = 8, \left(\frac{\mathrm{d}^{10} y}{\mathrm{d}x^{10}}\right)_0 32$	B1	3.1a
	Uses $y = y_0 + xy_0' + \frac{x^2}{2!}y_0'' + \frac{x^3}{3!}y_0''' + \dots$ with their values	M1	1.1b
	$=\frac{x^2}{2!}(2)+\frac{x^6}{6!}(-8)+\frac{x^{10}}{10!}(32)$	A1	1.1b
	$=x^2-\frac{x^6}{90}+\frac{x^{10}}{113400}$	A1	1.1b
		(4)	
(c)	$2(-4)^{n-1}\frac{x^{4n-2}}{(4n-2)!}$	M1 A1	3.1a 2.2a
		(2)	

(10 marks)

Notes:

(a)

M1: Realises the need to use the product rule and attempts first derivative

M1: Realises the need to use a second application of the product rule and attempts the second derivative

M1: Correct method for the third derivative

A1*: Obtains the correct 4^{th} derivative and links this back to y

(b)

B1: Makes the connection with part (a) to establish the general pattern of derivatives and finds the correct non-zero values

M1: Correct attempt at Maclaurin series with their values

A1: Correct expression un-simplified

A1: Correct expression and simplified

(c)

M1: Generalising, dealing with signs, powers and factorials

A1: Correct expression

Question	Scheme	Marks	AOs
6(a)(i)	Im •	M1	1.1b
	Re	A1	1.1b
(a)(ii)	$ z-4-3i = 5 \Rightarrow x+iy-4-3i = 5 \Rightarrow (x-4)^2 + (y-3)^2 =$	M1	2.1
	$(x-4)^2 + (y-3)^2 = 25$ or any correct form	A1	1.1b
	$(r\cos\theta - 4)^2 + (r\sin\theta - 3)^2 = 25$ $\Rightarrow r^2\cos^2\theta - 8r\cos\theta + 16 + r^2\sin^2\theta - 6r\sin\theta + 9 = 25$ $\Rightarrow r^2 - 8r\cos\theta - 6r\sin\theta = 0$	M1	2.1
	$\therefore r = 8\cos\theta + 6\sin\theta^*$	A1*	2.2a
		(6)	
(b)(i)	Im	B1	1.1b
	Re	B1ft	1.1b
(b)(ii)	$A = \frac{1}{2} \int r^2 d\theta = \frac{1}{2} \int (8\cos\theta + 6\sin\theta)^2 d\theta$ $= \frac{1}{2} \int (64\cos^2\theta + 96\sin\theta\cos\theta + 36\sin^2\theta) d\theta$	M1	3.1a
	$= \frac{1}{2} \int \left(32(\cos 2\theta + 1) + 96\sin \theta \cos \theta + 18(1 + \cos 2\theta) \right) d\theta$	M1	1.1b
	$=\frac{1}{2}\int (14\cos 2\theta + 50 + 48\sin 2\theta)d\theta$	A1	1.1b
	$= \frac{1}{2} \left[7\sin 2\theta + 50\theta - 24\cos 2\theta \right]_0^{\frac{\pi}{3}} = \frac{1}{2} \left\{ \left(\frac{7\sqrt{3}}{2} + \frac{50\pi}{3} + 12 \right) - \left(-24 \right) \right\}$	M1	2.1
	$=\frac{7\sqrt{3}}{4} + \frac{25\pi}{3} + 18$	A1	1.1b
		(7)	

Question	Scheme	Marks	AOs
	(b)(ii) Alternative:		
	C B		
	Candidates may take a geometric approach e.g. by finding sector + 2 triangles		
	Angle $ACB = \left(\frac{2\pi}{3}\right)$ so area sector $ACB = \frac{1}{2}(5)^2 \frac{2\pi}{3}$	M1	3.1a
	Area of triangle $OCB = \frac{1}{2} \times 8 \times 3$		
	Sector area ACB + triangle area $OCB = \frac{25\pi}{3} + 12$	A1	1.1b
	Area of triangle <i>OAC</i> : Angle $ACO = 2\pi - \frac{2\pi}{3} - \cos^{-1}\left(\frac{5^2 + 5^2 - 8^2}{2 \times 5 \times 5}\right)$ so area $OAC = \frac{1}{2}(5)^2 \sin\left(\frac{4\pi}{3} - \cos^{-1}\left(\frac{-7}{25}\right)\right)$	M1	1.1b
	$= \frac{25}{2} \left(\sin \frac{4\pi}{3} \cos \left(\cos^{-1} \left(\frac{-7}{25} \right) \right) \cos \frac{4\pi}{3} \sin \left(\cos^{-1} \left(\frac{-7}{25} \right) \right) \right)$ $= \frac{25}{2} \left(\left(\frac{7\sqrt{3}}{50} \right) + \frac{1}{2} \sqrt{1 - \left(\frac{7}{25} \right)^2} \right) = \frac{7\sqrt{3}}{4} + 6$	M1	2.1
	Total area = $\frac{25\pi}{3} + \frac{1}{2} \times 8 \times 3 + 6 + \frac{7\sqrt{3}}{4}$		
	$=\frac{7\sqrt{3}}{4} + \frac{25\pi}{3} + 18$	A1	1.1b
		(13 n	narks)

Question 6 notes:

(a)(i)

M1: Draws a circle which passes through the origin

A1: Fully correct diagram

(a)(ii)

M1: Uses z = x + iy in the given equation and uses modulus to find equation in x and y only

A1: Correct equation in terms of x and y in any form – may be in terms of r and θ

M1: Introduces polar form, expands and uses $\cos^2 \theta + \sin^2 \theta = 1$ leading to a polar equation

A1*: Deduces the given equation (ignore any reference to r = 0 which gives a point on the curve)

(b)(i)

B1: Correct pair of rays added to their diagram

B1ft: Area between their pair of rays and inside their circle from (a) shaded, as long as there is an intersection

(b)(ii)

M1: Selects an appropriate method by linking the diagram to the polar curve in (a), evidenced by use of the polar area formula

M1: Uses double angle identities

A1: Correct integral

M1: Integrates and applies limits

A1: Correct area

(b)(ii) Alternative:

M1: Selects an appropriate method by finding angle *ACB* and area of sector *ACB* and finds area of triangle *OCB* to make progress towards finding the required area

A1: Correct combined area of sector *ACB* + triangle *OCB*

M1: Starts the process of finding the area of triangle OAC by calculating angle ACO and attempts area of triangle OAC

M1: Uses the addition formula to find the exact area of triangle *OAC* and employs a full correct method to find the area of the shaded region

A1: Correct area

Question	Scheme	Marks	AOs
7(a)	$r = 10 \frac{\mathrm{d}f}{\mathrm{d}t} - 2f \Rightarrow \frac{\mathrm{d}r}{\mathrm{d}t} = 10 \frac{\mathrm{d}^2 f}{\mathrm{d}t^2} - 2 \frac{\mathrm{d}f}{\mathrm{d}t}$	M1	2.1
	$10\frac{\mathrm{d}^2 f}{\mathrm{d}t^2} - 2\frac{\mathrm{d}f}{\mathrm{d}t} = 0.4 \left(10\frac{\mathrm{d}f}{\mathrm{d}t} + 2f\right)$	M1	2.1
	$\frac{d^2 f}{dt^2} - 0.6 \frac{df}{dt} + 0.1 f = 0*$	A1*	1.1b
		(3)	
(b)	$m^2 - 0.6m + 0.1 = 0 \Rightarrow m = \frac{0.6 \pm \sqrt{0.6^2 - 4 \times 0.1}}{2}$	M1	3.4
	$m = 0.3 \pm 0.1i$	A1	1.1b
	$f = e^{\alpha t} \left(A \cos \beta t B \sin \beta t \right)$	M1	3.4
	$f = e^{0.3t} \left(A \cos 0.1t B \sin 0.1t \right)$	A1	1.1b
		(4)	
(c)	$\frac{\mathrm{d}f}{\mathrm{d}t} = 0.3e^{0.3t} \left(A\cos 0.1t + B\sin 0.1t \right) + 0.1e^{0.3t} \left(B\cos 0.1t - A\sin 0.1t \right)$	M1	3.4
	$r = 10 \frac{\mathrm{d}f}{\mathrm{d}t} - 2f$ $= e^{0.3t} ((3A+B)\cos 0.1t + (3B-A)\sin 0.1t) - 2e^{0.3t} (A\cos 0.1t + B\sin 0.1t)$	M1	3.4
	$r = e^{0.3t} \left((A+B)\cos 0.1t + (B-A)\sin 0.1t \right)$	A1	1.1b
		(3)	
(d)(i)	$t = 0, f = 6 \Rightarrow A = 6$	M1	3.1b
	$t = 0, r = 20 \Rightarrow B = 14$	M1	3.3
	$r = e^{0.3t} \left(20\cos 0.1t + 8\sin 0.1t \right) = 0$	M1	3.1b
	$\tan 0.1t = -2.5$	A1	1.1b
	2019	A1	3.2a
(d)(ii)	3750 foxes	B1	3.4
(d)(iii)	e.g. the model predicts a large number of foxes are on the island when the rabbits have died out and this may not be sensible	B1	3.5a
		(7)	
		(17 n	narks)

Question 7 notes:

(a)

M1: Attempts to differentiate the first equation with respect to t

M1: Proceeds to the printed answer by substituting into the second equation

A1*: Achieves the printed answer with no errors

(b)

M1: Uses the model to form and solve the auxiliary equation

A1: Correct values for *m*

M1: Uses the model to form the CF

A1: Correct CF

(c)

M1: Differentiates the expression for the number of foxes

M1: Uses this result to find an expression for the number of rabbits

A1: Correct equation

(d)(i)

M1: Realises the need to use the initial conditions in the model for the number of foxes

M1: Realises the need to use the initial conditions in the model for the number of rabbits to find both unknown constants

M1: Obtains an expression for r in terms of t and sets = 0

A1: Rearranges and obtains a correct value for tan

A1: Identifies the correct year

(d)(ii)

B1: Correct number of foxes

(d)(iii)

B1: Makes a suitable comment on the outcome of the model