Write your name here			
Surname		Other names	
Pearson Edexcel Certificate Pearson Edexcel International GCSE	Centre Number	Candi	date Number
Chemistry Unit: KCH0/4CH0 Science (Double Aw Paper: 1C		4SC0	
Thursday 14 May 2015 – Mo Time: 2 hours	orning	KCH0	eference /1C 4CH0/1C 1C 4SC0/1C
You must have: Calculator, ruler			Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 120.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

		[]	[]	T	T			
	0	Palium 4 4	20 20 Neon 10 40 40 18			Radon 86		
	7					210 At Astatine 85		
	9		16 Oxygen 8 Sultur 16	79 Selenium 34	128 Tellurium 52	210 Polonium 84		
	Ŋ		14 Nitrogen 31 Phosphorus 15		≥	209 Bis nuth 83		
	4		12 Carbon 6 Silicon 14	9	55 TS 25 TS	PD Lead 82		
	ო		11 Baron 5 27 Auminium 13	70 Gallium 31	115 116 49 49	204 Thallium 81		
				65 Znc 30 30				
TABLE						AU Gold 79		
THE PERIODIC TABLE				59 Nickel 28	106 Pd Alladium 46	195 Pt 78 78		
E PER				+		192 Iridium 77		
Η						190 Osmium 76		
	Group	Hydrogen 1		ese	99 Tc 43 Al	186 Rhenium 75	Key	Relative atomic mass Symbol Name Atomic number
	U	Ť		Ę	96 99 Molybdenum Technetium 42 43	184 Tungsten 74		E <
				Ę	F	181 Ta Tantalum 73		
				E	Ę	179 Hamium 72		
			E		~			
	N		9 Beryllium 4 Magnesium 12		ซี	137 Banum 56 88 Radium Radium	4	
	-		Lithium Lithium 3 23 Sodium	39 K Potassium 19	86 Rubidium 37	133 Csesium 55 223 Francium	5	
	Deriod	-	N M	4	2	9 2		

(b) Some cold water is poured into a conical flask and a bung inserted. The diagram shows the flask after a few minutes. - air and water vapour liquid water (i) What is occurring in the flask? (1) **A** boiling and condensing **B** condensing and evaporating **C** evaporating and freezing **D** freezing and melting (ii) Which formula represents a substance that is **not** present in the flask? (1) \blacksquare **A** H₂O(g) **B** H₂O(I) \square **C** N₂(g) \square **D** N₂(I) (Total for Question 1 = 5 marks)

5

- **2** A teacher demonstrates, in a fume cupboard, two experiments to show the movement of particles.
 - (a) In the first experiment she places some liquid bromine at the bottom of a gas jar. She then places another gas jar containing air on top of it, as shown in the diagram.

The diagram shows the apparatus at the start, after a few minutes and at the end of the experiment.

Place crosses (\boxtimes) in **two** boxes to show which statements are correct about this experiment.

(2)

- A All the air particles in the upper gas jar stay there.
- **B** Bromine and air react to form bromine oxide.
- C Bromine has a darker colour than air.
- **D** Bromine vapour diffuses upwards.
- **E** Liquid bromine sublimes during the experiment.
- **F** The concentration of bromine in the lower gas jar does not change.

4 2 6 7 A 0 7

3	Magnesium is an element in Group 2 of the Periodic Table.	
	When magnesium burns in air it forms magnesium oxide.	
	(a) Describe two observations made when magnesium burns in air.	
		(2)
1 .		
2		
-		
	(b) Magnesium oxide is	(1)
	A an acidic oxide formed from a metal	
	B an acidic oxide formed from a non-metal	
	C a basic oxide formed from a metal	
	D a basic oxide formed from a non-metal	
	(c) Some magnesium oxide is tested with damp litmus paper.	
	(i) State the final colour of the litmus paper.	
	(i) State the final colour of the fitting paper.	(1)
	(ii) Identify the ion responsible for this colour.	
		(1)
	(Total for Question	on 3 = 5 marks)
	•	

(c) The student carries out a flame test on the filtrate he obtains and observes a brick-red colour.	
(i) Identify the ion responsible for this colour.	(1)
(ii) Suggest why this ion is present in the filtrate.	(1)
(d) The student tests the filtrate for chloride ions by adding silver nitrate solution.	
(i) State what he would observe in this test.	(1)
(ii) State the name of the substance responsible for this observation.	(1)
(iii) He reads in a textbook that dilute nitric acid should be added before the sil solution in the test.	ver nitrate
Suggest why the student does not need to add dilute nitric acid in the test	. (1)
(e) The calcium sulfate residue he obtains is impure because it contains some hyd	rochloric acio
Describe how he can obtain a pure dry sample of calcium sulfate from this resident of the second sec	due. (2)
(Total for Question 4 = 10	marks)
	Turn o

P 4 4 2 6 7 A 0 1 2 3 6

(c)	Which of these conversions is an example of an addition reaction?	(1)
X	A compound P \rightarrow compound Q	
X	B compound $Q \rightarrow$ compound T	
X	C compound $R \rightarrow$ compound Q	
X	D compound $R \rightarrow$ compound U	
(d)	Complete the table to show the displayed formula and name of the isomer of compound T.	(2)
	Displayed formula	
	Name	

(f)	Old refrigerators may contain substances that ha Many new refrigerators use 152a, an organic con the ozone layer.		re.
	152a has the composition by mass C = 36.4%, H	= 6.0% and F = 57.6%.	
	(i) Calculate the empirical formula of 152a.	Ε)	3)
		empirical formula	
	(ii) The relative formula mass of 152a is 66		
	What is its molecular formula?	(1)
		molecular formula	
		(Total for Question 5 = 15 marks	5)
			15

P 4 4 2 6 7 A 0 1 5 3 6

(c) Describe how the boiling point, colour and viscosity of the fuel oil fraction differ from those of the gasoline fraction. (3) (d) Some fuel oil undergoes catalytic cracking. This involves the conversion of long-chain alkanes into alkenes and short-chain alkanes. (i) A temperature of about 650 °C is used in this process. Identify a catalyst that is used. (1) (ii) The alkane tridecane can be cracked to produce octane and two different alkenes. Complete the equation to show the formulae of the two alkenes. (2) $C_{13}H_{28} \rightarrow C_{8}H_{18} + \dots + \dots$ 17

4 2 6 7 A 0 1 7 3 6

(e)	When hydrocarbons undergo incomplete combustion, a poisonous gas can form.	
	(i) State the condition that causes incomplete combustion.	(1)
	(ii) Identify the poisonous gas.	(1)
	(iii) Explain why this gas is poisonous.	(1)
(f)	Another problem with using hydrocarbon fuels is the formation of substances that cause an environmental problem. This sequence of equations shows how one of these substances forms.	
	$S + O_2 \rightarrow SO_2$	
	$2SO_2 + O_2 \rightarrow 2SO_3$	
	$SO_3 + H_2O \rightarrow H_2SO_4$	
	(i) State the name of the product of each of these reactions.	(2)
SO ₂		
-		
H ₂ SO ₄	(ii) Describe one environmental problem caused by the H_2SO_4 formed.	(2)
	(Total for Question 6 = 17 ma	rks)
18		

8	A student carries out a titration to find the concentration of some dilute sulfuric acid.	
Ū	She is given	
	a supply of the dilute sulfuric acid	
	 sodium hydroxide solution of concentration 0.150 mol/dm³ 	
	 apparatus suitable for carrying out a titration 	
	 phenolphthalein indicator 	
	She uses this method to do the titration.	
	step 1 add 25.0 cm ³ of the sodium hydroxide solution to a conical flask	
	step 2 add 3 drops of phenolphthalein indicator to the conical flask	
	step 3 fill a burette with the sulfuric acid	
	step 4 add the sulfuric acid to the conical flask until the phenolphthalein indicate changes colour	or just
	(a) Name the piece of apparatus that the student should use to add the sodium hydro solution in step 1.	xide
		(1)
	(b) What is the colour change of the phenolphthalein indicator in step 4?	(1)
	A colourless to pink	
	B pink to colourless	
	C red to yellow	
	D yellow to red	
	(c) Why is it better to use phenolphthalein indicator rather than universal indicator in this titration?	
		(1)

(d) The diagram shows the burette readings in one titration.

Use the readings to complete the table, entering all values to the nearest 0.05 cm³.

- (2	1
- (9	J

burette reading in cm ³ after adding acid	
burette reading in cm ³ before adding acid	
volume of acid added in cm ³	

23

(e) The student repeats the experiment using the same sodium hydroxide solution but another solution of sulfuric acid of a different concentration.

The table shows her results.

burette reading in cm ³ after adding acid	27.65	27.80	27.75	27.40
burette reading in cm ³ before adding acid	0.50	1.50	1.00	1.00
volume of acid added in cm ³	27.15	26.30	26.75	26.40
titration results to be used (\checkmark)				

The average (mean) volume of acid should be calculated using only concordant results. Concordant results are those volumes that differ from each other by 0.20 cm³ or less.

(i) Identify the concordant results by placing ticks (\checkmark) in the table where appropriate.

(1)

(ii) Use your ticked results to calculate the average volume of acid added.

(2)

average volume of acid = cm³

(f) The student uses a similar method to find the concentration of a solution of phosphoric acid (H_3PO_4) .

The equation for the reaction is

 $\rm 3NaOH~+~H_{_3}PO_{_4}~\rightarrow~Na_{_3}PO_{_4}~+~3H_{_2}O$

The table shows her results.

volume of sodium hydroxide solution added to conical flask	25.0 cm ³
concentration of sodium hydroxide solution	0.180 mol/dm ³
average volume of phosphoric acid solution added from burette	28.30 cm ³

(i) Calculate the amount, in moles, of NaOH in 25.0 cm³ of the sodium hydroxide solution. (2)

- **9** This question is about bonding, structures and properties.
 - (a) The box gives four types of structure.

giant covalent giant ionic giant metallic simple molecular

The table shows some properties of four substances, A, B, C and D.

Complete the table by giving the correct type of structure for each substance.

You may use each structure once, more than once or not at all.

(4)

Substance	Electrical conductivity		Melting	Type of structure	
Substance	of the solid	e solid of the liquid			
A	poor	poor	low		
В	poor	poor	high		
С	good	good	high		
D	poor	good	high		

(b) Magnesium chloride (MgCl₂) is an ionic compound.

The diagram shows the electronic configurations of atoms of magnesium and chlorine.

(c) A molecule of c	arbon dioxide conta	ains double covalent k	oonds.	
Complete the d		and crosses, to show t		he
	0	С	Ο	
				(2)
	al in Group 3 of the			
(i) Describe the	e structure and bond	ding in indium.		(3)
(ii) Explain why	indium is malleable	2.		(2)
		(Tota	l for Question 9 = 1	7 marks)
28				

P 4 4 2 6 7 A 0 2 8 3 6

10 A student investigates the rate of decomposition of hydrogen peroxide solution.

The diagram shows the apparatus he uses in his experiments.

(b) The student carries out the experiment five times.

He uses a different solid in each experiment to see how effective each solid is as a catalyst in the decomposition.

He removes the bung, adds a small amount of one of the solids and quickly replaces the bung.

He records the time taken to collect 100 cm³ of oxygen in the syringe.

Solid	Time to collect 100 cm ³ of oxygen, in seconds	
A	76	
В	no oxygen collected	
С	35	
D	11	
E	54	

- (i) Which solid does not seem to act as a catalyst?
- (ii) Which solid is the most effective catalyst?
- (c) In the first experiment the student added 1 g of solid A.

Describe what he could do with the contents of the conical flask at the end of the experiment to show that A was a catalyst, and not a reactant.

(2)

(1)

(1)

(d) The student repeats the experiment using the same apparatus, but this time he records the volume of oxygen collected at intervals of 20 seconds.

Time in seconds	Volume of oxygen collected in cm ³		
Time in seconds	solid F	solid G	
0	0	0	
20	69	36	
40	89	58	
60	98	74	
80	100	86	
100	100	96	
120	100	100	

The table shows his results for two new solids F and G.

(i) The grid shows the results plotted for solid F.

On the grid, plot the results for solid G.

Draw a curve of best fit.

(3)

P 4 4 2 6 7 A 0 3 2 3 6

(ii) Use your graph to estimate the volume of oxygen collected after 70 seconds for solid G.	
Show on your graph how you obtained your answer.	(2)
(iii) How do the curves on the graph show that the reaction is faster with solid F than with solid G?	(1)
	(1)
(Total for Question 10 = 12 m	arks)
	33

11 A manufacturer investigates some reactions that produce hydrogen.

The table shows three possible reversible reactions that he could use. The enthalpy changes are also shown.

1 $CH_4(g) + 2H_2O(g) \Rightarrow CO_2(g) + 4H_2(g)$ +1652 $CO(g) + H_2O(g) \Rightarrow CO_2(g) + H_2(g)$ -413 $CH_4(g) + H_2O(g) \Rightarrow CO(g) + 3H_2(g)$ -206(a) (i) For reaction 1, predict whether the pressure should be low or high to give the greatest yield of products.(1)(ii) Give a reason for your choice.(1)(b) (i) For reaction 1, predict whether the temperature should be low or high to give the greatest yield of products.(1)(ii) Give a reason for your choice.(1)(iii) Give a reason for your choice.(1)(ii) Give a reason for your choice.(1)(ii) Give a reason for your choice.(1)(iii) Give a reason for your choice.(1) </th <th>Re</th> <th>eaction</th> <th>Equation</th> <th>ΔH in kJ/mol</th>	Re	eaction	Equation	ΔH in kJ/mol
3 $CH_4(g) + H_2O(g) \Rightarrow CO(g) + 3H_2(g)$ -206 a) (i) For reaction 1, predict whether the pressure should be low or high to give the greatest yield of products. (1) (ii) Give a reason for your choice. (1) b) (i) For reaction 1, predict whether the temperature should be low or high to give the greatest yield of products. (1) (ii) Give a reason for your choice. (1)		1	$CH_4(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 4H_2(g)$	+165
 (a) (i) For reaction 1, predict whether the pressure should be low or high to give the greatest yield of products. (ii) Give a reason for your choice. (1) (b) (i) For reaction 1, predict whether the temperature should be low or high to give the greatest yield of products. (1) (i) Give a reason for your choice. 		2	$CO(g) + H_2O(g) \implies CO_2(g) + H_2(g)$	-41
greatest yield of products. (1) (ii) Give a reason for your choice. (1) (b) (i) For reaction 1, predict whether the temperature should be low or high to give the greatest yield of products. (1) (ii) Give a reason for your choice.		3	$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$	-206
 (1) (b) (i) For reaction 1, predict whether the temperature should be low or high to give the greatest yield of products. (1) (ii) Give a reason for your choice. 				
the greatest yield of products. (1 (ii) Give a reason for your choice.	(ii) G	Sive a reas	son for your choice.	(1
	(ii) G	Sive a reas	son for your choice.	(1
	Ļ			

(c) For reaction 2, suggest why changing the temperature will have less effect on the yield of products than in reactions 1 and 3.	(1)
(d) (i) For reaction 3, predict the effect on the rate of the forward reaction of increasing the pressure, without changing the temperature.	(1)
(ii) Explain your prediction in terms of the particle collision theory.	(2)
(e) The manufacturer makes a batch of ethanoic acid from methanol and carbon monusing this reaction. $CH_3OH + CO \rightarrow CH_3COOH$	noxide
He starts with 64kg of methanol.	
Calculate the maximum mass of ethanoic acid he could obtain.	(3)
maximum mass of ethanoic acid =	5
(Total for Question 11 = 11 ma	arks)
TOTAL FOR PAPER = 120 MA	NRKS

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.