edexcel

Mark Scheme (Results)
Summer 2012

GCE Chemistry (6CH05) Paper 01
General Principles of Chemistry II Transition Metals and Organic Chemistry
(Including synoptic assessment)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA031866
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. Questions labelled with an asterix (*) are ones where the quality of your written communication will be assessed.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	D		
2	C		1
3	A		1
4(a)	D		1
4(b)	A		1
5(a)	C		1
5(b)	D		1
5(c)	C		1
6	B		1
7	A		1
8	D		1
9(a)	D		1
9(b)	A		1
9(c)	D		1
9(d)	C		1
10(a)	B		1
10(b)	B		1
11(a)	B		1
11(b)	D		
11(c)	A		$\mathbf{1}$
			Total for section A

Section B

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 2 (a) (i)}$	$(3 \times-120)=-360\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	No sign or + sign in answer, ie $360 /+360$	$\mathbf{1}$		
Any other					
wrong units				\quad	$\Delta \mathrm{E}$
:---					
IGNORE $\Delta \mathrm{H}$, and case of letters in units e.g allow Kj					

Question Number	Acceptable Answers	Reject	Mark
*12(a)(ii)	- (Bonding in) benzene/it is more stable (than Kekule) by 152 kJ mol^{-1} (consequential on (a)(i)) IGNORE sign - $\pi / p /$ double bond electrons are delocalized (around the ring) OR six pelectrons shared between six (ring) carbon atoms OR delocalized because of overlap of \mathbf{p} orbitals OR resonance hybrid of $\mathrm{C}=\mathrm{C}^{\prime}$ s and C-C's - Substitution reactions (rather than addition) NOTE: Nucleophilic substitution negates the substitution mark because it is wrong additional information - Maintains/regains delocalized system OR maintains/regains stability OR maintains/regains stabilization energy	Attack by electrophiles with no mention of substitution	4

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | ---: | :--- | :--- |
| $\mathbf{1 2 (b) (i)}$ | Concentrated nitric acid/ HNO_{3} (1)
 Concentrated sulfuric acid/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1)
 Allow conc or c. in place of 'concentrated'
 ALLOW Concentrated nitric acid and
 sulfuric acid
 OR | Concentrated
 hydrochloric
 acid | 2 |
| | Concentrated HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ | (2) | |
| Second mark depends on nitric acid | Max. (1) if no mention of concentrated
 Nitric acid and concentrated sulfuric acid
 scores (1)
 NOTE:
 conc. HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}($ (aq) scores (1) but
 conc. HNO_{3} and conc $\mathrm{H}_{2} \mathrm{SO}_{4}($ aq) scores
 (2) | | |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (b) (i i) ~}$	Electrophile/electrophilic	Acid Base Oxidizing agent Reducing agent	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
12(b)(iii)	$\begin{equation*} \mathrm{Br}_{2}+\mathrm{FeBr}_{3} \rightarrow \mathrm{FeBr}_{4}^{-}+\mathrm{Br}^{+} \tag{1} \end{equation*}$ OR $\mathrm{Br}-\mathrm{Br}+\mathrm{FeBr}_{3} \rightarrow \mathrm{Br}^{\delta+} \ldots . \mathrm{Br}^{\delta-} \mathrm{FeBr}_{3}$ IGNORE state symbols even if wrong Arrow from benzene ring electrons (from inside the hexagon) to $\mathbf{B r}^{+} / \mathbf{B r}^{\mathbf{\delta +}}\left(\ldots . . \mathrm{Br}^{\delta-} \mathrm{FeBr}_{3}\right)$ Correctly drawn intermediate with delocalization covering at least three carbon atoms, but not the carbon atom bonded to the bromine with the positive charge shown inside the hexagon The bonds to H and Br may be dotted Arrow from or close to bond to H to centre of ring and $\mathrm{H}^{+} / \mathrm{HBr}$ as a product ALLOW Kekulé structure for benzene and intermediate Each marking point is independent	lack of charges	4

Question Number	Acceptable Answers	Reject	Mark
12(b)(iv)	 OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$ accept: displayed $-\mathrm{SO}_{3} \mathrm{H}$ $\begin{aligned} & -\mathrm{SO}_{3}-\mathrm{H}^{+} \\ & -\mathrm{SO}_{2} \mathrm{OH} \end{aligned}$ If two formulae are given both must be correct Penalise if bond clearly goes to O or H rather than S Benzenesulfonic acid ALLOW phenyl sulfonic acid	Benzenesulfuric acid/benzosulfonic acid/benzylsufonic acid	2
Question Number	Acceptable Answers	Reject	Mark
12(c)(i)	Non-bonding/Ione pair electrons from oxygen... ...are delocalized/incorporated/donated into the ring (electron system) (Could be shown in diagram) OR increases electron density on the ring makes it (the ring) more susceptible to electrophilic attack/makes it (the ring) a better nucleophile	...from methyl/methoxy Makes it more electronegative	3

Question Number	Acceptable Answers	Reject	Mark
12(c)(ii)	ALLOW - Condensed structural formulae, for example $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Br}_{3} \mathrm{OH}+3 \mathrm{HBr}$ (1) - multiples - substitution to any positions IGNORE: $\mathrm{H}_{2} \mathrm{O}$ Position of bond to OH NOTE: Correct balanced equations giving mono and disubstitution phenols score 1 mark		2

Question Number	Acceptable Answers	Reject	Mark
12(d)	(Chloromethyl)benzene/chloromethylbenzene/ chlorophenylmethane/ benzyl chloride OR dichloromethane ALLOW phenylchloromethane Aluminium chloride ACCEPT formulae eg $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Cl}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, AlCl_{3} ACCEPT other halogen carriers eg $\mathrm{FeCl}_{3} /$ iron(III) chloride $/ \mathrm{ZnCl}_{2}$ ACCEPT bromine in place of chlorine for either/both marks Correct formula and wrong name or correct name and wrong formula or any other wrong additional information loses mark	$\mathrm{CH}_{2} \mathrm{Cl}$	2

Question Number	Acceptable Answers	Reject	Mark
13(a)	$\begin{array}{cl} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+2 \mathrm{HCl} \rightarrow & \mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}+2 \mathrm{Cl}^{-} \tag{1}\\ & \text {(1) } \\ \text { organic product } \end{array}$ Positive charges can be on nitrogens Balancing with $\mathbf{H C l}$ and Cl^{-} Chloride ions can be at ends of product ie $\mathrm{ClH}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Cl}$ for right hand side, with or without charges, but if given charges must balance $\begin{equation*} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+2 \mathrm{H}^{+} \rightarrow \quad \mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+} \tag{2} \end{equation*}$ Reaction with 1 mol HCl for 1 max If molecular formulae used 1 max IGNORE state symbols even if wrong	Covalent bond to $\mathrm{Cl},(-\mathrm{Cl})$	2
Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 13 \\ & \text { (b)(i) } \end{aligned}$	Blue or green or blue-green or lavender ALLOW qualification of blue or green e.g. dark blue, but not with another colour e.g. blue purple	Any other colour e.g. Purple Violet	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b) (i i)}$	The entropy change of the system is positive (1) Because there is an increase in the number of particles/entities/moles/molecules	Additional incorrect numbers	$\mathbf{2}$
	OR number of particles/entities/moles goes from Tour to seven	molecules/ atoms from four to seven	
Complex with three molecules goes to a complex with six molecules (1)			
Second mark depends on a positive entropy change			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b) (i i i) ~}$	They will rotate the plane of plane- polarised light (equally in opposite directions) Allow They will rotate the plane of polarised light (equally in opposite directions) OR They will rotate plane- polarised light (equally in opposite directions)	Optically active Reflect/ bend/ refract	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (c) (i)}$		Amide linkage correct Further detail correct, including trailing bonds (1)	
IGNORE brackets			
ALLOW multiple units			
Second mark dependent on correct amide link			
ALLOW fully correct structural formulae for 1			
fOCCH2CH2CONHCH2CH2NH			
Can start with NH_{2}			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (c) (i i) ~}$	Condensation (1) Hydrogen chloride/ $\mathrm{HCl} /$ water $/ \mathrm{H}_{2} \mathrm{O}$ or another small molecule/is produced/lost/formed/removed (as well as the polymer) Mark independently	Addition/elimination	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
*13(c)(iii)	Types of force Hydrogen bonds and (permanent) dipole(-permanent dipole) forces and London/van der Waals'/dispersion forces OR Explanation e.g temporary/induced dipoles All three needed for $1^{\text {st }}$ mark (which is given even if the forces are later explained incorrectly) Hydrogen bonds (Between) the hydrogen atoms on the nitrogen atoms and ... OR (Between) $\mathrm{N}-\mathrm{H}$ and (the lone pair of electrons on) oxygen/ nitrogen atoms These marks can be shown by a diagram Permanent dipole-permanent dipole forces Because the $\mathrm{C}=\mathrm{O} /$ carbon-oxygen bond/the $\mathrm{C}-\mathrm{N}$ bond is polar/a dipole OR N and/or O are electronegative atoms This mark can be shown by a diagram providing the polarity of the bond is shown London forces Polymer has large number of/many electrons OR Explanation e.g temporary/induced/fluctuating dipoles (1)	Just p.d.- p.d Just v d W Large molecular mass alone	5

| Mole ratio
 $\mathrm{N}-0.7575$
 $\mathrm{O}-2.935$
 empirical formula is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~N}$
 Transferred error for hydrogen
 Two from first three marks still awarded
 Then amount of hydrogen is 0.004 mol
 This gives 0.003125 mol oxygen
 empirical formula is $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{3} \mathrm{~N}_{2}$
 Both the above nitrogen and hydrogen errors
 Award 1 mark for correct mass of carbon or
 correct moles of carbon
 Then mass of nitrogen is 0.014 g
 Then mass of hydrogen is 0.004 g
 This gives 0.004125 mol oxygen
 Empirical formula is $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{~N}$ | (1) | |
| :--- | :--- | :--- | :--- |

Question Number	Acceptable Answers	Reject	Mark
14(b)	$\begin{aligned} (\mathbf{1 2} \times 4+\mathbf{1} \times 8+\mathbf{1 6} \times \mathbf{3}+\mathbf{1 4} \times \mathbf{2}) \mathrm{n} & =132 \\ \mathrm{n} & =1 \end{aligned}$ So molecular formula is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{~N}_{2}$ Some element of working must be shown TE from (a) of nitrogen error can be given only if: $\begin{aligned} (12 \times 4+1 \times 8+16 \times 4+14) n & =132 \\ n & =0.98 \end{aligned}$ (which is approximately 1) TE from (a) of hydrogen error can be given only if: $\begin{array}{r} (12 \times 4+1 \times 4+16 \times 3+14 \times 2) n=132 \\ n=1.03 \end{array}$ (which is approximately 1) TE from (a) of nitrogen and hydrogen error can be given only if: $\begin{aligned} (\mathbf{1 2 \times 4 + 1 \times 4 + 1 6 \times 4 + 1 4) n} & =132 \\ n & =1.015 / 1.02 \end{aligned}$ (which is approximately 1)		1

Question Number	Acceptable Answers	Reject	Mark
14(c)(i)	\mathbf{Y} reacts with $\mathrm{HCl} /$ acid so it is an amine /contains $\mathrm{NH}_{2} / \mathrm{CO}_{2}{ }^{-}$ It reacts with alkali/ NaOH so it is a carboxylic acid/contains $\mathrm{CO}_{2} \mathrm{H} / \mathrm{NH}_{3}{ }^{+}$ It forms a purple colour/reacts with ninhydrin so it is an amino acid OR As it is an amine/contains $\mathrm{NH}_{2} / \mathrm{CO}_{2}^{-}$it will react with $\mathrm{HCl} /$ acid As it is a carboxylic acid/contains $\mathrm{CO}_{2} \mathrm{H} / \mathrm{NH}_{3}{ }^{+}$ it will react with alkali/ NaOH As it is an amino acid so it forms a purple colour/reacts with ninhydrin Each marking point is independent and requires both the functional group and the test NOTE: It is an amino acid so it reacts with acid and alkali (with neither of first two points)	Just ... it is a base Just ... it is an acid ...it is amphoteric (alone)	3

Question Number	Acceptable Answers	Reject	Mark
14(c)(ii)	 ALLOW OH OR 2-aminoethanoic acid/ aminoethanoic acid/glycine Mark independently	$\mathrm{C}-\mathrm{H}-\mathrm{O}$ if bond is clearly to H 1- aminoethanoic acid	2

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 14 \\ & (\mathrm{c})(\mathrm{iii}) \end{aligned}$	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CONHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ Or $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CONHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ Or $\mathrm{HOCOCH}_{2} \mathrm{NHOCCH}_{2} \mathrm{NH}_{2}$ ALLOW Or reversed displayed formula ALLOW ionic formulae with $\mathrm{H}_{3} \mathrm{~N}^{+}$and $\mathrm{CO}_{2}{ }^{-}$		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (a) (i)}$	$\mathrm{MnO}_{2}((\mathrm{~s}))$	Anything else eg MnO_{4}^{-}	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
15(a)(ii)	- They provide alternative routes/mechanisms for reactions - With lower activation energies/ E_{a} OR catalysts lower activation energy / E_{a} - So a greater proportion of /more particles/reactants have sufficient energy/ E_{a} (to react)/greater frequency of/more successful collisions All three points $\mathbf{2}$ any two points $\mathbf{1}$ All points stand alone and can be in any order IGNORE references to adsorption/surfaces Provide alternate route with lower activation energy scores one mark NOTE: The term activation energy could be described rather than stated		2

Question	Acceptable Answers	Reject	Mark
15(a)(iii)	Transition metals form various/variable oxidation states They are able to donate and receive electrons/they are able to oxidize and reduce/they are able to be oxidized and reduced /ions contain partially filled (sub-)shells of d electrons ALLOW Energy differences between the oxidation states are small (for second mark) OR Reduce reactant with more positive/higher electrode potential Then oxidize reactant with more negative/lower electrode potential Or other way round: Oxidize reactant with lower electrode potential etc	They change oxidation state Any mention of providing a surface/adsorption loses second mark Formation of intermediates (alone)	2

Question Number	Acceptable Answers $\mathbf{1 5 (b) (i)}$	Two (less stable) oxidation states/one higher and one lower oxidation state of the same/an element react to form one(more stable) oxidation state ALLOW The reverse reaction is a disproportionation in which (one oxidation state of) the same/an element and it EITHER: reacts to give one higher and one lower oxidation state/two oxidation states OR is both oxidized and reduced	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (c) (i i)}$	$2 \mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{MnO}_{3}^{-}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})$		$\mathbf{2}$
Entities (1) balancing (1)			
Correct equation with $\mathrm{H}_{2} \mathrm{O}$ and/or OH^{-} on both sides (even if in brackets) max. 1 IGNORE state symbols ACCEPT multiples ACCEPT $=$for arrow Reverse equation max. 1	Equations including electrons		
No signs on entities max. 1			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (c) (i i i) ~}$	(Hazard -) the sodium hydroxide/alkali is corrosive/caustic/burns (skin)/attacks the skin OR attacks the cornea/eye/causes blindness (1)	MnO $_{4}{ }^{-}$is toxic Cl_{2} is toxic	$\mathbf{2}$
	IGNORE Harmful/Irritant/toxic/hazardous/concentrated		
	(Minimize Risk by -) wear gloves OR (full) eye protection/goggles/safety glasses	(1)	
Protection must relate to sodium hydroxide e.g. sodium hydroxide is irritant so wear gloves / eye protection scores 1 mark This means 'This experiment is dangerous so wear eye protection' score zero			
IGNORE lab coats and/or fume cupboards			
(Oxygen) gas given off so container must not be sealed			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (d)}$	Manganese(II)/manganous sulfate (1) (solution) ALLOW any named soluble manganese(II) salt - chloride, bromide, iodide, nitrate	$\mathrm{Mn}^{2+}(\mathrm{aq)}$ alone	2
Sodium hydroxide (solution) (1) ALLOW any named soluble hydroxide	Ammonia unless dilute and added dropwise	ACCEPT formulae Mark independently except contradiction eg NaOH $+\mathrm{HCl}(0)$	

Question Number	Acceptable Answers	Reject	Mark
15(e)(i)	${ }_{o}^{x} C^{\times \times \times \times} .{ }_{N}$ Accept dots, crosses, mixture of both Triple bond Non-bonding electrons IGNORE presence/absence of negative charge But if positive charge max 1 Second mark dependent on first IGNORE correct inner shell electrons on either or both atoms	If not paired Incorrect inner shell electrons 1 max	2

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{1 5 (e) (i i) ~}$	The non-bonding / Ione pair of electrons on the carbon	(1)		2
	ALLOW non-bonding/lone pair of electrons on the nitrogen		Forms a dative covalent/coordinate bond (to central metal ion)	(1)
Mark independently				

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (e) (i i i) ~}$	Octahedral/octahedron	Tetrahedral/hexagonal/square planar/(trigonal) bipyramid	$\mathbf{1}$
	ALLOW	Octohedral	
Octehedral			

TOTAL FOR SECTION C = 22 MARKS

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA031866 Summer 2012

Llywodraeth Cynulliad Cymru Welsh Assembly Government

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

