

GCSE MATHEMATICS 8300/3H

Higher Tier Paper 3 Calculator

Mark scheme

June 2020

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2020 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
1	A or B or both	B1	

Q	Answer	Mark	Comments
2	$y = \frac{1}{2} x$	B1	

Q	Answer	Mark	Comments
3	400%	B1	

Q	Answer	Mark	Comments
4	<u>1</u> 16	B1	

Q	Answer	Mark	Commen	its	
	17 500	B1			
5(a)	Additional Guidance				
	Accept response in words				

Q	Answer	Mark	Comments		
	18 499	B1			
	Additional Guidance				
5(b)	Accept response in words				
	18499.9 or 18499			В0	

Q	Answer	Mark	Commer	nts
	Two arcs of equal radius or a single arc, centre B, cutting BA and BC or a single arc cutting BC with radius = BA	M1	± 2 mm ± 2 mm	
	Fully correct method of construction of bisector of angle ABC	A1		
	Add	ditional (Guidance	
	Award M1 if correct arc(s) seen along	gside inco	orrect arc(s)	
	Angle bisector does not need to mee extended beyond AD			
	Accept an arc touching the line BA or			
6	No arcs seen on BC	MO		
	B			C

Q	Answer	Mark	Comments
	32 ² and 60 ² or 1024 and 3600 or 4624	M1	
7	$\sqrt{32^2 + 60^2}$ or $\sqrt{1024 + 3600}$ or $\sqrt{4624}$	M1dep	
,	68	A1	
	Ad	ditional G	Guidance
	Answer only 68	M1M1A1	
	$68 = 2\sqrt{17}$ incorrect further working	M1M1A0	
	68 from scale drawing		MOMOAO
	68 from trigonometry		MOMOAO

	Mark	Commen	ເວ
Alternative method 1			
$12 \times \frac{30}{60}$ or $12 \times \frac{1}{2}$ or 6	M1	oe eg 12 ÷ 2	
135 – 90 or 45	M1	oe eg $\frac{3}{4}$	
8	A1		
Alternative method 2			
$\frac{30}{135-90}$ or $\frac{30}{45}$ or $\frac{2}{3}$ or $\frac{135-90}{30}$ or $\frac{45}{30}$ or $\frac{3}{2}$	M1	oe eg 30: (135 – 90) or 30: 45 or 2:3 or (135 – 90): 30 or 45: 30 or 3:2	
$12 \times \frac{30}{135 - 90}$	M1dep	oe eg $\frac{12 \times 30}{45}$ eg $12 \div \frac{3}{2}$	
8	A1		
Additional Guidance			
Award M1 or M2 work even if not sub	sequently	used /	
Check diagram for working			
0.133 implies M1M1			
12 ÷ 3 = 4 and 12 – 4 = 8			M2A1
Answer –8			M2A0
Ignore units unless 6 or 45 is from clearly incorrect working eg 12 (mph) = 60 minutes 6 (mph) = 30 minutes eg 12 (mph) = 30 minutes 6 (mph) = 15 minutes			M1 M0
	$12 \times \frac{30}{60}$ or $12 \times \frac{1}{2}$ or 6 $135 - 90 \text{ or } 45$ 8 Alternative method 2 $\frac{30}{135 - 90} \text{ or } \frac{30}{45} \text{ or } \frac{2}{3}$ or $\frac{135 - 90}{30} \text{ or } \frac{45}{30} \text{ or } \frac{3}{2}$ $12 \times \frac{30}{135 - 90}$ 8 Add Award M1 or M2 work even if not subscribed by the subscr	$12 \times \frac{30}{60}$ M1 or $12 \times \frac{1}{2}$ or 6 M1 $135 - 90$ or 45 M1 Alternative method 2 M1 $\frac{30}{135 - 90}$ or $\frac{30}{45}$ or $\frac{2}{3}$ or $\frac{3}{2}$ M1 $12 \times \frac{30}{135 - 90}$ or $\frac{45}{30}$ or $\frac{3}{2}$ M1 Additional Grade of the control of the con	

Q	Answer	Mark	Commen	its
	$\frac{16}{20}$ or $\frac{20}{16}$ or $\frac{12}{20}$ or $\frac{20}{12}$ or 12: 9.6 or 9.6: 12 or 16: 9.6 or 9.6: 16	M1	oe eg $16 \div 20$ eg $\frac{4}{5}$ or $\frac{5}{4}$ or $\frac{3}{5}$ or eg 0.8 or 1.25 or 0.6	
	9.6	oe		
9	Additional Guidance			
	Award M1 work even if not subseque	ntly used		
	Ignore further working in an attempt teg 9.6 in working with answer 10	M1A1		
	12 × 20 ÷ 16			M1

Q	Answer	Mark	Commer	nts
	8c + 12 or -5c + 1	M1	may be seen in a grid implied by $3c + 12 + 1$	or 8c + 13 – 5c
	3c + 13	A1		
	Additional Guidance			
10	Do not ignore further working			
	eg 3c + 13 = 16c			M1A0
	eg $3c + 13$, $c = \frac{-13}{3}$			M1A0
	8c + 12 - 5c - 1		•	M1
	8c + 3 - 5c + 1			M1

Q	Answer	Mark	Comments
	Alternative method 1		
	1 – 0.18 – 0.62 or 0.2	M1	oe
	their 0.2 × 350	M1dep	oe
	70	A1	
	Alternative method 2		
11	0.18 × 350 or 63 or 0.62 × 350 or 217 or 0.8 × 350 or 280 350 – their 63 – their 217 or 350 – 280	M1	oe oe
	70	A1	
	Ad	ditional G	Guidance
	$\frac{70}{350}$ on answer line		M1M1A0
	0.8		МОМОАО

Q	Answer	Mark	Commer	nts
	a=2 and $b=4$ and $c=5$		B2 $a + b = 6$ with integer $a \ge 0$ and $b \ge 1$	er values of
	a = 4 and $b = 2$ and $c = 5$		B1 c = 5	
	or		or	
	a = 0 and $b = 6$ and $c = 5$	В3	$a+b+c=11$ with integ $a\geqslant 0$ and $b\geqslant 0$ and $c\geqslant 0$	
			or	
			13th value = 3 and 14th stated	h value = 4
			or	
			correct median position	indicated on a list
12	Additional Guidance			
	Values may be seen alongside or in t	the table		
	Blank answer line does not indicate z	ero for the	at value	
	eg a = b = 6 c = 5			B1
	a = 2 $b = 6$ $c = 5$			B1
	a = 11 b = 0 c = 0			B1
	a = 6 $b = 0$ $c = 5$			B1
	a = 6 $b = 0$ $c = 3$			В0

Q	Answer	Mark	Commen	ts
13(a)	$\frac{5a^2}{4}$ or $1\frac{1}{4}a^2$	B2	B1 correct single fraction form eg $\frac{50a^2}{40}$ or 1.25 a^2 or $\frac{5}{4}a$ or $\frac{5a}{4}$ or $1\frac{1}{4}a$	n not in simplest
	Ade	ditional G	Guidance	
	Final answer 1.25 a^2 (even if $\frac{5a^2}{4}$ seen in working)		B1	

Q	Answer	Mark	Commer	nts
Q 13(b)	Valid evaluation	B1 ditional G ct statement algebra	eg she needs to divide or the answer should be 30 audance ent or incorrect algebra is	10 by 2
	She must divide everything by 2	B1		
	She should divide both sides by 2	В0		
	She needs to work out 6c + 10 then divide by 2			В0
	Her method is wrong			В0
	3c + 5 alone			В0

Q	Answer	Mark	Comments
	Alternative method 1		
	$60 \times (1 - 0.15)$ or 60×0.85 or 51 or $40 \times (1 - 0.1)$ or 40×0.9 or 36	M1	oe 60×0.15 or 9 or 40×0.1 or 4
	2 × their 51 + 2 × their 36 or 174	M1dep	oe 2 × their 9 + 2 × their 4 or 26 their 51, their 36, their 9 and their 4 must come from a correct method
14	$(2 \times 60 + 2 \times 40) \times 0.75$ or 200×0.75 or 150 or $(2 \times 60 + 2 \times 40) \times 0.25$ or 200×0.25 or 50	M1	oe
	174 and 150 and No or 224 and 200 and No or 26 and 50 and No	A1	SC3 176 and 150 and No or 226 and 200 and No or 24 and 50 and No

Mark scheme and Additional Guidance continue on the next page

Q	Answer	Mark	Commen	its
	Alternative method 2			
	$60 \times (1 - 0.15)$ or 60×0.85 or 51 or $40 \times (1 - 0.1)$ or 40×0.9 or 36	M1	oe 60 × 0.15 or 9 or 40 × 0.1 or 4	
	2 × their 51 + 2 × their 36 or 174	M1dep	oe 2 × their 9 + 2 × their 4 their 51, their 36, their must come from a corre	9 and their 4
14 cont	$\frac{(2\times60+2\times40)-\text{their }174}{2\times60+2\times40}\times100$ or $\frac{200-\text{their }174}{200}\times100$ or $13(\%)$ or $\frac{174}{200}\times100$ and $100-25$ or $87(\%)$ and $75(\%)$	M1dep	oe $\frac{2 \times \text{their } 9 + 2 \times \text{their } 4}{200}$ or $\frac{26}{200} \times 100 \text{ or } 13(\%)$ or $\frac{200 - (2 \times \text{their } 9 + 2 \times 200)}{200}$ and $100(\%) - 25(\%)$ or $87(\%) \text{ and } 75(\%)$	b)
	13% and No or 87% and 75% and No	A1	oe SC3 12% and No or 88% and 75%	á and No
	Ad	ditional G	Guidance	
	Ignore incorrect statements or calculate	ations with	full mark response	
	Consistently working with half of a pe	erimeter ca	an score up to 4 marks	
	SC3 must come from transposing ler	ngth and w	ridth values	
	Accept length and width values transposed for up to 3 marks			
	eg 60×0.9 with 40×0.85 and 2			M1M1
	eg 60×0.9 with 40×0.9 and 2×0.00 eg 60×0.1 or 40×0.15 or 6	54 + 2 ×	36 (not transposed)	M1M0 M1

Q	Answer	Mark	Commer	nts	
	Alternative method 1				
	$\frac{x}{3} > 11 - 4$		oe term in x isolated		
	or $\frac{x}{3} > 7$				
	or				
	$4-11>-\frac{x}{3}$	M1			
	or $-7 > -\frac{x}{3}$				
	or				
	-21 > −x				
15	x > 21 or 21 < x	A1	SC1 $x = 21$ or $x < 21$	or 21 > x	
	Alternative method 2				
	12 > 33 - x		oe fractions eliminated		
	or		eg 12 – 33 > –x		
	x > 33 – 12	M1			
	or				
	-12 < -33 + x				
	x > 21 or 21 < x	A1	SC1 $x = 21$ or $x < 21$	or 21 > x	
	Add	ditional C	Guidance		
	Do not allow use of '=' for M1 unless re	ecovered	for final answer		
	12 > 11 - x			M0A0	
	21 on answer line with no working			M0A0	

Q	Answer	Mark	Commer	nts
	2 × 6 or 12 and 7 × 11 or 77 and 12 × 3 or 36 or 125	M1	may be seen in table at least two correct prod values	ucts or their
16	their 12 + their 77 + their 36 20 or $\frac{125}{20}$ or 125 ÷ 20 or $6\frac{1}{4}$	M1dep	oe condone bracket error if eg condone 12 + 77 + 3	•
	6.25	A1		
	Ad	ditional G	Guidance	
	6.25 in working, 6 on answer line			M1M1A0
	125 ÷ 3			M1M0A0
	Correct product(s) seen in the table but a different method not using their product(s) used for the mean is choice eg 125 in table but mean calculated as 20 ÷ 3 = 6.7			MOMOAO

Q	Answer	Mark	Commer	nts
	2(12 - x) or $24 - 2xor12(x + 2)$ or $12x + 24or12x + 2x$ or $14xor2x + x^2 + x(12 - x)or 2x + x^2 + 12x - x^2$	M1	oe correct area of small rec rectangle or unshaded s may be seen on diagran	ection
17	or $\frac{12(x+2)}{4} = 2(12-x)$ or $12x + 2x = 6(12-x)$	M1dep	oe equation eg $3(x + 2) = 2(12 - x)$ 3x + 6 = 24 - 2x 12(x + 2) = 8(12 - x) 12x + 24 = 96 - 8x	
	3x + 2x = 24 - 6 or $14x + 6x = 72$	M1dep	oe equation with bracker terms collected eg $5x = 18$ $12x + 8x = 96 - 24$ $20x = 72$	ts expanded and
	$\frac{18}{5}$ or $3\frac{3}{5}$ or 3.6	A1	oe	
	Ad	ditional G	Guidance	
	3x + 6			M1
	Trial and improvement with $x = 3.6$ chosen			M1M1M1A1
	Trial and improvement without $x = 3.6$ chosen			МОМОМОАО

Q	Answer	Mark	Comments
	Alternative method 1	-	
	30 × 0.45 or 13.5	M1	
	their 13.5 ÷ 2.54 ²	M1dep	oe eg $\frac{30 \times 0.45}{2.54^2}$
	2.09(2) or 2.093 or 2.1	A1	SC1 5.31(4) or 5.315 or 5.3
	Alternative method 2		
	30 ÷ 2.54 ² or 4.65(0)	M1	oe
40	their 4.65(0) × 0.45	M1dep	oe eg $\frac{30}{2.54^2} \times 0.45$
18	2.09(2) or 2.093 or 2.1	A1	SC1 5.31(4) or 5.315 or 5.3
	Alternative method 3		
	$0.45 \div 2.54^2$ or $0.0697(5)$ or 0.0698	M1	oe
	their 0.0697(5) × 30	M1dep	oe eg $\frac{0.45}{2.54^2} \times 30$
	2.09(2) or 2.093 or 2.1	A1	SC1 5.31(4) or 5.315 or 5.3
	Additional Guidance		
	SC1 when 2.54 is used and not 2.54	2	

Q	Answer	Mark	Comments
19	x < 1 and y > -3	B1	

Q	Answer	Mark	Comments		
	Fully correct box plot	B2	B1 three correctly positioned measures		
	Additional Guidance				
20(a)	Amari 10 11 12 13 14 15 16 Score Does not need to be ruled, mark inter Whiskers must stop at 12 and 20 for B Whiskers must reach 12 and 20 for B	3 17 ntion ± ½ B2	B2 square		

Q	Answer	Mark	Commer	nts	
	(Ben IQR =) 3 and (Amari IQR =) 6 and Ben	B2	B1 (Ben IQR =) 3 or (Amari IQR =) 6 or Ben and his box is smalled		
20(b)	Ben and his IQR is smaller Additional Guidance				
	Ben's IQR is 3 smaller than Amari's		B2		
	Statement based only on incorrect IC	R values		В0	
	Ben			В0	
	Only using range			В0	

Q	Answer	Mark	Commen	its
21(a)	Angle ABP = 71 or $180 - 2 \times 71$ or 180 - 142 or $(180 - 90 - 71) \times 2$	M1	oe may be marked on diagram in correct position	
	38	A1		
	Ado			
	71 or 38 in working with either angle correctly identified, 180 on answer line			M1A0
	71 or 38 in working with neither angle correctly identified, 180 on answer line			M0A0

Q	Answer	Mark	Commen	its	
	Alternative method 1				
	(Angle CXD =) 360 – 204 or 156	M1	may be marked on diagr position	am in correct	
	156 ÷ 2 = 78 and Yes				
	or	A1			
	78 × 2 = 156 and Yes				
24/5)	Alternative method 2				
21(b)	(Angle CXD =) 78 × 2 = 156	M1	may be marked on diagr position	am in correct	
	204 + 156 = 360 and Yes				
	or	A1			
	360 - 156 = 204 and Yes				
	Additional Guidance				
	Angle CXD should be double angle C	ED	D M0A0		

Q	Answer	Mark	Comments
	$\frac{120}{250} \text{ or } 0.48$ or $\frac{130}{250} \text{ or } 0.52$ or $\frac{17}{32} \text{ or } 0.53125$ or $\frac{15}{32} \text{ or } 0.46875$	M1	Oe
22	$\frac{120}{250} \times \frac{17}{32}$ or $\frac{51}{200}$ or 0.255	M1	oe implies 1st and 2nd M1
	$\frac{130}{250} \times \frac{15}{32}$ or $\frac{39}{160}$ or 0.24375	M1	oe implies 1st and 3rd M1
	0.255 and 0.24375 and Yes	A1	must be comparable if fractions used eg $\frac{204}{800}$ and $\frac{195}{800}$ and Yes
	Ado	ditional G	Guidance
	Accept values given as percentages		
	Accept decimal values truncated or re	2 dp or better	

Q	Answer	Mark	Comments
	$(\overrightarrow{JN} =) \frac{3}{2} \times 4\mathbf{b} \text{ or } 6\mathbf{b}$	M1	oe eg $(\overrightarrow{NJ}=)$ -6 b implied by $\overrightarrow{JL}=10$ b may be seen on diagram
23	$(\overrightarrow{JK} =)$ their $6\mathbf{b} + 4\mathbf{b} - 7\mathbf{a}$ or $10\mathbf{b} - 7\mathbf{a}$	M1dep	oe eg (KJ=) 7 a – 10 b
	$5\mathbf{b} - \frac{7}{2}\mathbf{a}$ or $5\mathbf{b} - 3.5\mathbf{a}$	A1	oe eg $\frac{1}{2} (10\mathbf{b} - 7\mathbf{a})$ SC2 3.5 $\mathbf{a} - 5\mathbf{b}$ or $\frac{7}{2}\mathbf{a} - 5\mathbf{b}$
	Additional Guidance		

Q	Answer	Mark	Commer	nts
	Draws a tangent at (2, 7)	M1	Must see a tangent on the	ne graph
	Their gradient at (2, 7)	A1ft	ft their tangent ± 0.2 tolerance on their readings	
24(a)	Additional Guidance			
	Mark intention for drawing of tangent			
	No tangent drawn	angent drawn		M0A0

Q	Answer	Mark	Comments
24(b)	It is negative	B1	

Q	Answer	Mark	Comments
25	6	B1	

Q	Answer	Mark	Comments	
	Alternative method 1 Working with 3.47			
	10x = 34.7 or $100x = 347.7$	M1	oe multiplication by a power of 10 eg $1000x = 3477.7$ any letter	
26	10x - x = 34.7 3.47 or $9x = 31.3$ with $10x = 34.7$ seen or $100x - 10x = 347.7 34.7$ or $90x = 313$ with $100x = 347.7$ and $10x = 34.7$ seen or $100x - x = 347.7 3.47$ or $99x = 344.3$ with $100x = 347.7$ seen	M1dep	oe subtraction to eliminate recurring digits eg $1000x - 10x = 3477.7 34.7$ or $990x = 3443$ with $1000x = 3477.7$ and $10x = 34.7$ seen numbers must all be correct	
	$x = 3.47$ stated and M2 scored and $9x = 31.3$ and $(x =) \frac{31.3}{9}$ and $\frac{313}{90}$ or $x = 3.47$ stated and M2 scored and $90x = 313$ and $(x =) \frac{313}{90}$ or $x = 3.47$ stated and M2 scored and $99x = 344.3$ and $(x =) \frac{344.3}{99}$ and $\frac{313}{90}$	A1	oe eg $x = 3.47$ stated and M2 scored and $990x = 3443$ and $(x =) \frac{3443}{990}$ and $\frac{313}{90}$	

Mark scheme continues on the next three pages

Q	Answer	Mark	Comments
	Alternative method 2 Working wi	th 0.47	
	10x = 4.7 or $100x = 47.7$	M1	oe multiplication by a power of 10 eg $1000x = 477.7$ any letter
	$10 \ x - x = 4.7 0.47$ or $9x = 4.3$ with $10x = 4.7$ seen or $100x - 10x = 47.7 4.7$ or $90x = 43$ with $100x = 47.7$ and $10x = 4.7$ seen or $100x - x = 47.7 0.47$ or $99x = 47.3$ with $100x = 47.7$ seen	M1dep	oe subtraction to eliminate recurring digits eg $1000x - 10x = 477.7 4.7$ or $990x = 473$ with $1000x = 477.7$ and $10x = 4.7$ seen numbers must all be correct
26 cont	$x = 0.47$ stated and M2 scored and $9x = 4.3$ and $(x =) \frac{4.3}{9}$ and $3\frac{4.3}{9}$ and $\frac{313}{90}$ or $x = 0.47$ stated and M2 scored and $90x = 43$ and $(x =) \frac{43}{90}$ and $3\frac{43}{90}$ and $\frac{313}{90}$ or $x = 0.47$ stated and M2 scored and $99x = 47.3$ and $(x =) \frac{47.3}{99}$ and $3\frac{47.3}{99}$ and $3\frac{313}{90}$	A1	oe eg $x = 0.47$ stated and M2 scored and $990x = 473$ and $(x =) \frac{473}{990}$ and $3\frac{473}{990}$ and $\frac{313}{90}$

Mark scheme continues on the next page

Q	Answer	Mark	Comments
	Alternative method 3 Working wi	th 0.07	
	10x = 0.7 or $100x = 7.7$	M1	oe multiplication by a power of 10 eg $1000x = 77.7$ any letter
	10x - x = 0.7 0.07 or $9x = 0.7$ with $10x = 0.7$ seen or $100x - 10x = 7.7 0.7$ or $90x = 7$ with $100x = 7.7$ and $10x = 0.7$ seen or $100x - x = 7.7 0.07$ or $99x = 7.7$ with $100x = 7.7$ seen	M1dep	oe subtraction to eliminate recurring digits eg $1000x - 10x = 77.7 0.7$ or $990x = 77$ with $1000x = 77.7$ and $10x = 0.7$ seen numbers must all be correct
26 cont	$x = 0.07$ stated and M2 scored and $9x = 0.7$ and $(x =) \frac{0.7}{9}$ and $3.4 + \frac{0.7}{9}$ and $\frac{313}{90}$ or $x = 0.07$ stated and M2 scored and $90x = 7$ and $(x =) \frac{7}{90}$ and $3.4 + \frac{7}{90}$ and $\frac{313}{90}$ or $x = 0.07$ stated and M2 scored and $99x = 7.7$ and $(x =) \frac{7.7}{99}$ and $3.4 + \frac{7.7}{99}$ and $\frac{313}{90}$	A1	oe eg $x = 0.07$ stated and M2 scored and $990x = 77$ and $(x =) \frac{77}{990}$ and $3.4 + \frac{77}{990}$ and $\frac{313}{90}$

Additional guidance continues on the next page

Q	Answer	Mark	Comment	ts
	Ac	Iditional C	Buidance	
	313 ÷ 90 = 3.47			M0M0A0
26 cont	Alt 1 M1dep oe subtraction to eliminate recurring $100x - 10x = 313$ with $100x = 347.7$ or $90x = 347.7 34.7$ with $100x$ (apply same principle in Alt 2 and Al Alt 2 equivalents for final part of A1 eg For $3\frac{43}{90}$ and $\frac{313}{90}$ allow $3 + \frac{43}{90}$ and $\frac{313}{90}$ Alt 3 equivalents for final part of A1 eg For $3.4 + \frac{7}{90}$ and $\frac{313}{90}$ allow $3 + \frac{4}{10} + \frac{7}{90}$ and $\frac{313}{90}$			

Q	Answer	Mark	Comments
27	(1, -6)	B1	

Q	Answer	Mark	Comments		
28	$-\frac{1}{4}$ or $-1 \div 4$	M1	oe		
	5 = their $-\frac{1}{4} \times 8 + c$ or $c = 7$ or $y - 5 = -\frac{1}{4}(x - 8)$	M1dep	oe $y = -\frac{1}{4}x + 7 \text{ implies M2}$		
	$-\frac{1}{4}x + 7 = 0$ or $(x =) 28$	M1dep	oe		
	(28, 0)	A1	SC2 (-12, 0) or (6.75,	0)	
	Additional Guidance				
	Answer (0, 28) is A0 but may score M marks if working seen				
	(-12, 0) from using the gradient of the perpendicular as 1/4			SC2	
	(6.75, 0) from using the gradient of the perpendicular as 4			SC2	

Q	Answer	Mark	Comments		
	$0.5 \times 8 \times 10 \times \sin 114$ or [36.5, 36.542]	M1	oe		
	$8^2 + 10^2 - 2 \times 8 \times 10 \times \cos 114$ or [229, 229.1]	M1	oe eg 164 – 160 × cos 114		
	$\sqrt{8^2 + 10^2 - 2 \times 8 \times 10 \times \cos 114}$ or [15.1, 15.14] or [7.55, 7.57]	M1dep	oe dep on 2nd M1		
29	$0.5 \times \pi \times (0.5 \times \text{their}[15.1, 15.14])^2$ or $0.5 \times \pi \times \text{their} [7.55, 7.57]^2$ or [89.49, 90.03]	M1dep	dep on 2nd and 3rd M1		
	[125.99, 126.572]	A1			
	Additional Guidance				
	Diameter must come from using the cosine rule				
	2nd mark is not dependent on the firs				

Q	Answer	Mark	Comments		
30	2x	M1	oe		
	$\frac{1}{2}x - \left(\frac{1}{2}x\right)^2$ or $\frac{1}{2}x - \frac{1}{4}x^2$	M1	oe $\frac{1}{4} x^2 + \frac{3}{2} x = 0 \text{ oe equation implies M2}$		
	$x\left(\frac{1}{4}x + \frac{3}{2}\right) = 0$ or $x(x+6) = 0$	M1dep	dep on M2 oe method for correct quadratic equation $eg \ \frac{-6\pm\sqrt{6^2-4\times1\times0}}{2\times1}$		
	x = 0 and $x = -6$	A1			
	Additional Guidance				
	$\frac{1}{2}x - \frac{1}{4}x^2 = 2x$			M2	
	$2x - x^2 = 8x$			M2	
	$x^2 + 6x = 0$			M2	