

ADVANCED SUBSIDIARY GCE PHYSICS B (ADVANCING PHYSICS)

G491

Physics in Action

Candidates answer on the question paper.

OCR supplied materials:

Data, Formulae and Relationships Booklet

Other materials required:

- Electronic calculator
- Ruler (cm/mm)

Tuesday 24 May 2011 Morning

Duration: 1 hour

Candidate forename				Candidate surname				
Centre numb					Candidate nu	umber		

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Show clearly the working in all calculations, and give answers to only a justifiable number of significant figures.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Answer all the questions.
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- You are advised to spend about 20 minutes on Section A and 40 minutes on Section B.
- The values of standard physical constants are given in the Data, Formulae and Relationships Booklet. Any additional data required are given in the appropriate question.
- Where you see this icon you will be awarded marks for the quality of written communication in your answer.

This means, for example, you should

- ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear;
- organise information clearly and coherently, using specialist vocabulary when appropriate.
- This document consists of 16 pages. Any blank pages are indicated.

2

Answer all the questions.

Section A

1	Here is a list of e	electrical units.					
		С	S	V	Ω	w	
	State which of th	iese units is cor	rect for eac	h of the follo	wing combin	nations of quantities:	
	voltage current						
	energy time						
	current × time						[3]
2	A sample of plas It is stretched to		riginally 10	cm long.			
	Calculate the tot Make your metho		sample at	a strain of 3			
				total length	=		cm [2]

- 3 A bathroom ceramic tile needs to be difficult to break and difficult to scratch.
 - (a) Draw a straight line from each requirement to the necessary property.

requirement	property
	brittle
difficult to break	
difficult to break	hard
difficult to corotch	stiff
difficult to Scratch	
	strong
difficult to scratch	strong

- (b) Tiles can be cut as follows:
 - scratch a line across the glazed surface
 - apply forces as shown in Fig. 3.1 to open the crack.

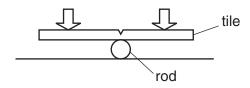


Fig. 3.1

Put $(\ensuremath{\checkmark})$ in the boxes next to **two** statements below which, taken together, best explain how this method works.

[2]

The stress is uniform across the surface of the tile.	
The stress is concentrated at the tip of the crack.	
The stress builds up in the crack by plastic flow of the atomic structure.	
The stress at the scratch is reduced by plastic flow of the atomic structure.	
The stress cannot be relieved by slip within the random atomic structure.	[2]

4 The speed of light in a sample of glass is $1.9 \times 10^8 \, \text{m} \, \text{s}^{-1}$.

$$c = 3.0 \times 10^8 \,\mathrm{m\,s^{-1}}$$

Calculate the refractive index of this glass. Make your method clear.

refractive index =		[2]	
--------------------	--	-----	--

5 Fig. 5.1 shows the effect of a lens on wavefronts of a parallel beam of light.

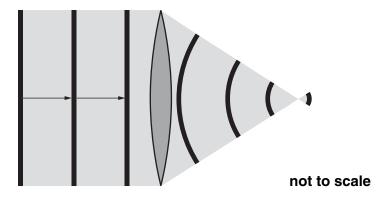


Fig. 5.1

(a) Describe the effect of the lens on the wavefronts.

[1]

(b) Explain how the lens produces this effect.

Met	als and long-chain polymer materials under stress can show plastic behaviour.
(a)	Explain what is meant by plastic behaviour.
	[1]
(b)	Choosing either a metal or a long chain polymer, describe in terms of its internal structure how it can show plastic behaviour.
	material chosen

© OCR 2011 Turn over

[2]

7 Fig. 7.1 shows a graph of stress against strain for a stretched copper wire.

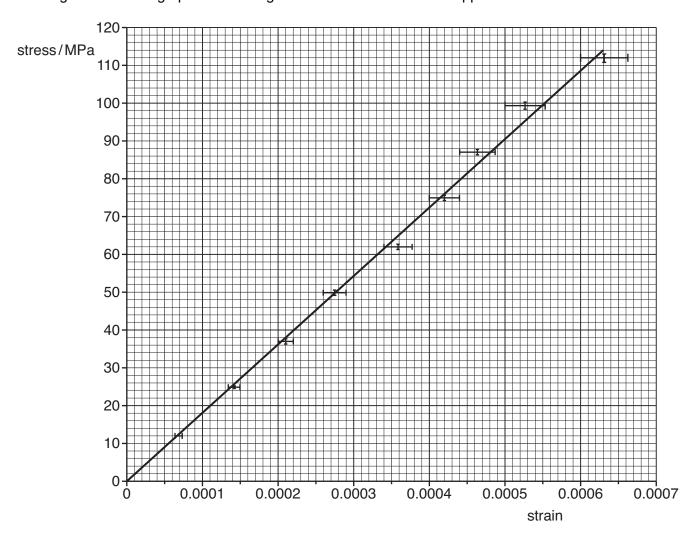


Fig. 7.1

(a) Use the data from the graph to calculate the Young modulus of copper. Make your method clear.

Young modulus = Pa [2]

(b) Explain how you would use the uncertainty bars in Fig. 7.1 to estimate the uncertainty in the measurement of the Young modulus.

You may draw on Fig. 7.1 to illustrate your answer.

[2]

[Section A Total: 21]

Section B

8 Fig. 8.1 is a digital photograph of the identical space shuttles Atlantis (foreground) and Endeavour (background) at the NASA Space Centre in Florida. The length of each shuttle is shown by white marker lines.

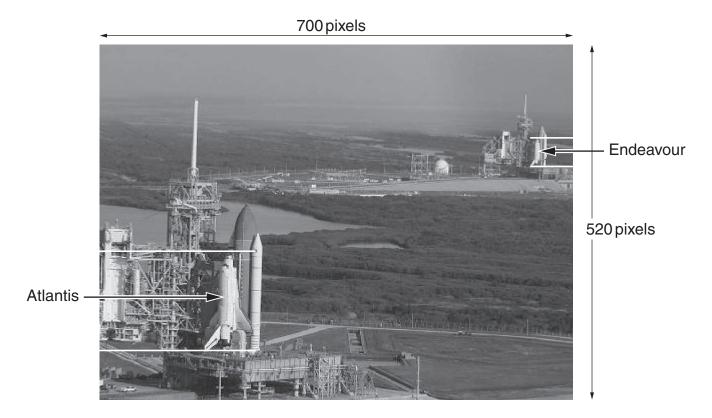


Fig. 8.1

(a) Each pixel of the image is recorded on a greyscale with 128 levels.

State and explain how many bits per pixel are needed for 128 alternative levels.

bits per pixel =[2]

(b) The image is 700×520 pixels.

Show that the amount of information in the image is less than 1 Mbyte.

(c) Use Fig. 8.1 to calculate the ratio:

distance from camera to Endeavour distance from camera to Atlantis

_	$^{\circ}$
13	

In your answer, you should make the steps in your method clear.

		ratio =[3]
(d)	The	image resolution at the position of Atlantis is 0.24 m pixel ⁻¹ .
	(i)	Use this information to estimate the length of Atlantis indicated in Fig. 8.1.
		Make your method clear.
		length = m [2]
	(ii)	Estimate the resolution of the image at the position of Endeavour .

resolution at Endeavour = m pixel⁻¹ [1]

[Total: 10]

9	This question is about digitising the analogue speech signal in a mobile telephone system. The
	range of frequencies from 300 to 3400 Hz of the analogue speech signal is converted into a digital
	signal.

(a) State the bandwidth of speech frequencies of	converted.
--	------------

والخلو ثريريا والمراجع والم	11-1	647
bandwidth =	 ПС	

(b) (i) State the minimum sampling frequency for digitising the analogue signal. Explain why it has this value.

minimum	ı sampling	frequency =	:	Н	Z
---------	------------	-------------	---	---	---

[2]

(ii) $V_{\rm noise}$ is the voltage range over which the noise varies. $V_{\rm total}$ is the voltage range over which the total transmitted signal including the noise varies.

For this system
$$\frac{V_{\text{total}}}{V_{\text{noise}}} \approx 250$$
.

Use this information to explain why there is no need to use more than 8 bits per sample for this system.

In your answer, you should make your explanation clear.

	(iii)	Calculate the rate of transmission of information required for this system.
		rate of transmission = bit s ⁻¹ [2]
(c)	In a is u	different system a wider frequency range of the analogue signal from the original speech sed.
	Exp	plain one advantage and one disadvantage of using a wider frequency range.
	adv	rantage
	disa	advantage

[2]

[Total: 10]

10	This question is about a copper conducting bar which must carry a large current from a generator to a transformer in a power station.					
	(a)	The	bar loses $2.0\mathrm{kW}$ of power P to the surroundings when it carries a current I of $8000\mathrm{A}$.			
		(i)	Using $P = I^2 R$, show that the resistance R of the bar must be about $3 \times 10^{-5} \Omega$.			
		(ii)	[2] Calculate the p.d. across the length of the bar.			
			p.d. = V [2]			
	(b)	(i)	Using $G = \sigma A/L$, show that the uniform cross-sectional area A of a conductor of length L , of material of conductivity σ and resistance R is given by the equation			
			$A = \frac{L}{\sigma R} .$			
		/ii\	[2]			
		(ii)	The bar in (a) is 10 m long. Calculate its cross-sectional area.			
			conductivity of copper = $5.9 \times 10^7 \mathrm{S}\mathrm{m}^{-1}$			
			cross-sectional area = m ² [2]			
			[Total: 8]			

11 Fig. 11.1 shows how the emf \mathcal{E} across a temperature sensor depends on temperature.

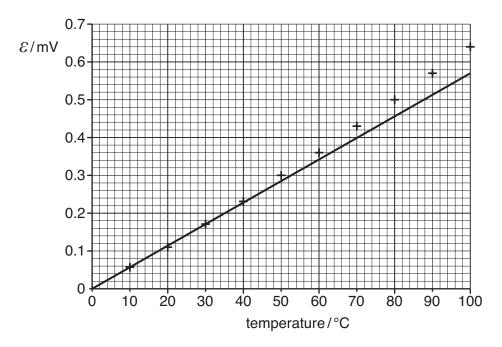


Fig. 11.1

(a) (i) A straight line that fits the data **up to 40^{\circ}C** has been added to the graph. Describe the relationship between the emf \mathcal{E} and the temperature in the range 0° C to 100° C shown by **all** the data in Fig. 11.1.

[2]

(ii) Estimate the **sensitivity** of the temperature sensor in the range 0 °C to 40 °C. Make your method of estimating the sensitivity clear.

sensitivity = V°C⁻¹ [2]

(b) Fig. 11.2 shows the circuit diagram of the temperature sensor connected to an external resistance \mathbf{R} .

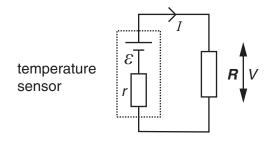


Fig. 11.2

The sensor behaves like a supply of variable emf \mathcal{E} and constant internal resistance r.

(i) Explain why this circuit can be described as a potential divider circuit.

[1]

(ii) The p.d. V across the sensor, and the current I in the circuit are given by the equations:

$$V = \mathcal{E} - Ir$$
 and $I = \frac{\mathcal{E}}{(R+r)}$

Combine the equations to show that $V = \frac{\mathcal{E} R}{(R+r)}$.

(iii) The resistor R is replaced by a meter to measure the p.d. across the sensor. This meter has a resistance R of 15 Ω .

Use the equation $V = \frac{\mathcal{E} R}{(R+r)}$ to show that the meter will display a voltage about 2%

lower than the true emf \mathcal{E} .

internal resistance of sensor $r = 0.30 \Omega$

[2]

(c) The meter used to measure the p.d. across the temperature sensor in (b)(iii) is the moving coil galvanometer, listed in the table below. Two other instruments which can be used to measure voltage are also shown.

instrument	full scale deflection (maximum reading)	sensitivity
moving coil galvanometer	300 mm	10 μV mm ⁻¹
cathode ray oscilloscope	100 mm	1.0 mV mm ⁻¹
digital voltmeter	200.0 μV	0.1 μV steps

Give **one** reason why each of these other instruments is **not** suitable. Use data from the table **and** the graph of Fig. 11.1.

not the cathode ray oscilloscope because:

not the digital voltmeter because:

[2]

[Total: 11]

[Section B Total: 39]

PLEASE DO NOT WRITE ON THIS PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2011