Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE
In Chemistry (9CH0) Paper 03
General and Practical Principles in Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 1806_9CHO_03_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Acceptable Answers	Additional Guidance	Mark
1(a)(i)	An answer that makes reference to the following points: setting up of the dipole - uneven distribution of electrons / (random) movement of electrons / (random) fluctuations of electrons type of dipole - (results in an) instantaneous dipole / temporary dipole (in the first molecule) induction of a second dipole - causes/induces a (second) dipole on another molecule	M1 \& M3 could be scored for an appropriate diagram Allow "Change in electron density" Allow "transient dipole" / "oscillating dipole" Do not award for "permanent dipole" Allow neighbouring molecule / adjacent molecule Do not award for "permanent dipole"	(3)

Question Number	Acceptable Answers	Additional Guidance	Mark
1(a)(ii)	An explanation that makes reference to the following points: relative number of electrons - bromine has more electrons (than chlorine) / bromine has one more shell of electrons (than chlorine) (1) relative strength of intermolecular forces - (so) bromine has stronger (London) forces (between molecules) / more (heat) energy is needed to overcome the London forces between bromine molecules / greater temporary dipole - induced dipole forces	Allow reverse arguments Allow correct formulae Bromine has 35/70 electrons and chlorine has 17/34 electrons Ignore comments about protons, molecular mass etc Do not award "more outer shells" Ignore comments about 'points of contact' Allow more (London) forces Allow "bonds between molecules" Award (0) marks overall if any implication that covalent bonds are broken (on boiling)	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
1(b)	An answer that makes reference to the following points: mixing of $1^{\text {st }}$ pair of solutions - mix Br_{2} with KCl mixing of $\mathbf{2}^{\text {nd }}$ pair of solutions - mix Br_{2} with KI or mix I_{2} with KBr colours of halogen (in cyclohexane) - colour seen for experiment 1 / bromine is orange / yellow and colour seen for experiment 2/ iodine is purple / pink / violet / lilac correct ionic equation - $\mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Br}^{-}+\mathrm{I}_{2}$	Ignore any reference to any additional reactions, e.g. with silver nitrate Award mark if correct ionic equation is given Ignore colours before the addition of cyclohexane Do not award brown Do not award red Allow multiples Ignore state symbols even if incorrect	(5)

Question Number	Acceptable Answers	Additional Guidance	Mark
2(a)	An answer that makes reference to the following points: ($1^{\text {st }}$ Step) - HCN (and KCN) - Nucleophilic addition - $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCN} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$ ($2^{\text {nd }}$ Step) - Any identified (dilute) strong acid / H^{+} - Heat (under reflux) / reflux - Hydrolysis - $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+$ $\mathrm{NH}_{4}{ }^{+}$ or $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{NH}_{3}$ (1)	Ignore references to other conditions / solvent in step 1 Allow HCN and $\mathrm{CN}^{-} / \mathrm{H}^{+}$and $\mathrm{CN}^{-} / \mathrm{H}^{+}$and KCN or KCN and $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{KCN}$ and HCl or HCN at pH 8-9 M1 can be scored for the appearance of HCN in M3 Do not award additional incorrect reaction types e.g. nitrification Allow skeletal formulae in equations M4, 5 \& 6 dependent on the formation of any nitrile in step 1 Allow sodium hydroxide followed by acid Do not award conc. acid / just "acidify" / just "acid" Allow warm Do not award additional incorrect reaction types Allow two equations involving NaOH and H^{+} Allow $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{Cl}$	(7)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{2 (b) (\mathbf { i })}$	Condensation (polymerisation)	Ignore esterification or addition-elimination Do not award addition	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark	
2(b)(ii)	Repeat unit circled on diagram as follows:	Allow any repeat unit	(1)	

(Total for Question 2 = 9 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
3(a)	$0.816 / 8.16 \times 10^{-1}(\mathrm{~g})$		(1)
Question Number	Acceptable Answers	Additional Guidance	Mark
3(b)	- calculation of moles of CO_{2}	Example of calculation: (moles $\mathrm{CO}_{2}=\frac{225}{24000}=$) 0.009375 Allow $9.375 \times 10^{-3} / 9.38 \times 10^{-3} / 9.4 \times 10^{-3}$ Ignore SF except 1SF	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
3(c)	- moles of MCO_{3} - method for calculation of molar mass of MCO_{3} - molar mass final answer to 1 , 2 or 3 SF - consequential identification of Group 2 metal by name or formula NOTE Alternative method can score 3 MAX Calculation of moles of $\mathrm{CO}_{3}{ }^{2-}$ (Calculation of mass of $\mathrm{CO}_{3}{ }^{2-}$) Deduction of mass of M by subtraction Calculation of Ar of M to 1,2 or 3 SF AND Identification of group 2 metal	Example of calculation: Moles of $\mathrm{MCO}_{3}=$ moles $\mathrm{CO}_{2}=0.009375$ (mol) Molar mass of $\mathrm{MCO}_{3}=\frac{0.816}{0.009375}$ $\left(=87.04\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)\right)$ M2 subsumes mark for M1 $=87.0 / 87 / 90\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ NOTE M3 mark subsumes mark for M2 and M1 $(87.0-60)=27$ AND Mg / Magnesium / MgCO_{3} Allow TE on answers to parts (a) and (b), with Metal consequential on calculated molar mass but M must be a Group 2 element Moles $\mathrm{CO}_{3}{ }^{2-}=0.009375$ (Mass of $\mathrm{CO}_{3}{ }^{2-}=0.009375 \times 60=0.5625 \mathrm{~g}$) Mass of $M=0.2535 \mathrm{~g}$ $\mathrm{Ar}=0.2535 / 0.009375$ $=27.0 / 27 / 30\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ AND Mg / Magnesium / MgCO_{3}	(4)

| Question
 Number | Acceptable Answers | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- | :---: |
| 3(d)(i) | An explanation that makes reference to the following
 points: | (1) | Allow bung not fitting tightly resulting in leaks
 Ignore references to CO2 dissolving
 Ignore references to other types of gas leak |
| - the bung was not replaced quickly enough | (1) | Allow 'smaller volume of gas collected' / lower
 reading of gas volume
 Mark points M1 and M2 independently | |

Question Number	Acceptable Answers	Additional Guidance	Mark
3(d)(ii)	An answer that makes reference to the following point: The acid was (already) in excess (and more acid won't affect this)	Allow The carbonate is the limiting reactant / the acid is not the limiting reactant	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
3(d)(iii)	An explanation that makes reference to the following points: - rate of reaction is faster and powder has greater surface area - no effect on (final) volume of gas and moles of (metal) carbonate are unchanged or because the rate is faster more gas will be lost before the bung is replaced so the (final) volume will be less	Mark points M1 and M2 independently Both parts of statement needed Both parts of statement needed Allow mass / amount for moles Allow reactant for metal carbonate	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{3 (e) (i)}$	- balanced equation with state symbols	Example of equation: $\mathrm{MCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ Allow a correct equation for the decomposition of any Group 2 carbonate	(1)

Question Number	Acceptable Answers		Additional Guidance	Mark
3(e)(ii)	- subtractions to obtain masses - calculation of moles of CO_{2} - calculation of molar mass of MCO_{3}	(1) (1) (1)	Example of calculation: (mass of $\mathrm{CO}_{2}=20.447-20.205$) $=0.242$ AND (mass of $\left.\mathrm{MCO}_{3}=20.447-19.996\right)=0.451$ moles of $\mathrm{CO}_{2}=\frac{0.242}{44}$ $=0.0055(0)(\mathrm{mol}) / 5.5(0) \times 10^{-3}(\mathrm{~mol})$ ALLOW TE from M2 to M3 $\mathrm{Mr} \text { of } \mathrm{MCO}_{3}=\frac{0.451}{0.0055(0)}$ $=82\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Correct answer with or without working scores 3 Ignore SF except 1 Ignore attempts to identify the metal	(3)

Question Number	Acceptable Answers	Additional Guidance	Mark
3(f)	An answer that makes reference to the following point:	Allow calculations comparing the two percentage errors: e.g. Student 1:- $(0.001 / 0.816) \times 100 \%=0.12 \%$ and	(1)
	Student 3 used a smaller mass / less (and the uncertainty of the balance was the same) or Student 1 used a larger mass / more (and the uncertainty of the balance was the same)	Student 3:- $0.001 / 0.451 \times 100 \%=0.22 \%$	

Question Number	Acceptable Answers	Additional Guidance	Mark	
$\mathbf{3 (g)}$	An explanation that makes reference to the following points:		(2)	
	• more CO_{2} (would appear to be) given off	(1)		
	• (So) calculated molar mass is smaller	(1)	M2 dependent on M1	
	OR			
	•Less MO would appear to have been formed	(1)		
	•Calculated molar mass would be greater	(1)	M2 dependent on M1	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(a)(i)	$\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$	Allow partially or fully displayed formula Ignore connectivity	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
4(a)(ii)	An answer that makes reference to any two of the following: - single peak / all H or all C in same environment / no splitting pattern - (TMS) peak to the right / upfield / out of the way of other peaks / peak doesn't overlap with other peaks - (TMS) low boiling temperature / volatile / can be easily removed - gives a strong signal so only a small amount needed	Allow 12 H or 4 C in the same environment Ignore references to inertness / nontoxicity / cost / non-polar(ity) Ignore chemical shift $=0$ $12 \mathrm{H} / 4 \mathrm{C}$ are equivalent so gives a strong signal scores 2 marks	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
4(b)(ii)	An answer that makes reference to the following points: - the chemical shift $\delta 2.2$ identified - four remaining chemical shifts identified - two splitting patterns given and explained	$\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$ / methyl attached to $\mathrm{C}=\mathrm{O}$ Identifies 2 or 3 chemical shifts correctly scores 1 б $\quad 1.23 .5$ (2.2) 1 specific splitting patterns explained scores 1	(5)

Question Number	Acceptable Answers	Additional Guidance	
$\mathbf{4 (c) (i i)}$		Do not award other types of structure	

| Question
 Number | Acceptable Answers | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: | :---: |
| $\mathbf{5 (a)}$ | +5 | Allow $5+/+\mathrm{V} / \mathrm{V}+/(\mathrm{V}) / 5$
 Do not award V^{+} | (1) |

Question Number	Acceptable Answers	Additional Guidance	Mark
5(b)	A description that makes reference to the following points: M1 and M2 -colours Yellow \rightarrow blue \rightarrow green \rightarrow violet / lavender / purple / mauve 2 or 3 colours linked to correct species / oxidation states / reactions (1) 4 colours linked to correct species / oxidation states / reactions M3 - statement Statement that sequence is from +5 to +4 to +3 to +2 or (step-wise) reduction / zinc is a reducing agent M4, M5 and M6-equations These three equations, with appropriate E^{θ} values $\left\{\begin{array}{l} \mathrm{Zn}+2 \mathrm{VO}_{3}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{VO}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \text { and } E^{\ominus}=(+) 1.76(\mathrm{~V})(\mathbf{1}) \\ \mathrm{Zn}+2 \mathrm{VO}^{2+}+4 \mathrm{H}^{+} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{~V}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \text { and } E^{\ominus}=(+) 1.1(0)(\mathrm{V}) \\ \mathrm{Zn}+2 \mathrm{~V}^{3+} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{~V}^{2+} \quad \text { and } E^{\ominus}=(+) 0.5(0)(\mathrm{V}) \tag{1} \end{array}\right.$ M7 - stops at $\mathbf{V}^{\mathbf{2 +}}$ No (further) reduction (feasible) to V metal / V(0) or $\mathrm{Zn}+\mathrm{V}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{V}$ not feasible or $\begin{equation*} E^{\ominus}=-0.42(\mathrm{~V}) \tag{1} \end{equation*}$	M3 can be implied from species in explanation or equations Allow multiples Ignore state symbols even if incorrect 3 correct equations with incorrect E^{\ominus} scores 2 2 correct equations with incorrect E^{\ominus} scores 1 3 correct E^{\ominus} with incorrect equations scores 1	(7)

Question Number	Acceptable Answers	Additional Guidance	Mark
5(c)	A explanation that makes reference to the following points: M1 V changes (its oxidation state / oxidation number) from +5 to +4 (as it oxidises the sulfur dioxide) OR The oxidation number of V decreases in the reaction OR Vanadium is reduced in the reaction with SO_{2} OR $\mathrm{V}_{2} \mathrm{O}_{5}$ oxidises the $\mathrm{SO}_{2} / \mathrm{S}$ OR $\begin{equation*} \mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3} \tag{1} \end{equation*}$ M2 (Then) returns to +5 (oxidation state / oxidation number) by reacting with oxygen OR $\begin{equation*} 2 \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~V}_{2} \mathrm{O}_{5} \tag{1} \end{equation*}$	Ignore any references to heterogeneous catalysis Allow Forms $\mathrm{V}_{2} \mathrm{O}_{4} / \mathrm{VO}_{2}$ (as an intermediate) Do not award VO^{2+} or $\mathrm{VO}_{3}{ }^{-}$or $\mathrm{VO}_{2}{ }^{+}$ Allow (re-) forms $\mathrm{V}_{2} \mathrm{O}_{5}$	(2)

| Question
 Number | Acceptable Answers | Additional Guidance |
| :--- | :--- | :--- | :--- | Mark

Indicative content (IPs)
 IP1:

- $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow\left[\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right](\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

IP2:

- blue ppt / blue solid (when $\left[\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right](\mathrm{s})$ is formed)

IP3:

- $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

IP4:

- Deep blue solution / dark blue solution (when $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}(\mathrm{aq})$ is formed)

IP5:

- $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

IP6:

- Yellow / green (solution when $\left[\mathrm{CuCl}_{4}\right]^{2-}(\mathrm{aq})$ is formed)

Allow omission of square brackets throughout Allow for IP1
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$
Only penalise incorrect or missing state symbols in this equation (IP1)

Allow for IP3

$\mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})$
$\left[\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right](\mathrm{s})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow$
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$\left[\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right](\mathrm{s})+6 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow$
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}(\mathrm{aq})+2 \mathrm{NH}_{4}{ }^{+}(\mathrm{aq}) 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+$ $2 \mathrm{OH}^{-}(\mathrm{aq})$

Ignore formation of initial precipitate $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$ Do not award $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}(\mathrm{aq})$

Do not award 'yellow precipitate’
Allow equilibrium sign \rightleftharpoons in any reaction Ignore any initial colours, even if incorrect

Question Number	Acceptable Answers	Additional Guidance	Mark
6(a)(i)	An answer that makes reference to the following points: - $3300-2500\left(\mathrm{~cm}^{-1}\right)$ and $\mathrm{O}-\mathrm{H}$ (bond) - $1725-1700\left(\mathrm{~cm}^{-1}\right)$ and $C=O$ (bond)	Allow any value(s) within the range $3300-2500$ (cm^{-1}) Allow -OH Allow any value(s) within the range $1725-1700$ (cm^{-1}) Allow 1320-1210 (cm ${ }^{-1}$) and C-O	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
6(a)(ii)	An answer that makes reference to the following points: - structures 1 and 2 will have an absorption at Either $\begin{equation*} \mathrm{C}=\mathrm{C} \text { at } 1669-1645\left(\mathrm{~cm}^{-1}\right) \tag{1} \end{equation*}$ or $\mathrm{C}-\mathrm{H}$ in an alkene at $3095-3010\left(\mathrm{~cm}^{-1}\right)$ - only structure 2 will have an absorption due to the presence of an alcohol / O-H at $3750-3200\left(\mathrm{~cm}^{-1}\right)$ - structure 3 will have none of these absorptions / will not show $\mathrm{C}=\mathrm{C}$ absorption / C-H absorption for an alkene	Reject $\mathrm{C}=\mathrm{C}$ at $3010\left(\mathrm{~cm}^{-1}\right)$	(3)

Question Number	Acceptable Answers		Additional Guidance	Mark
6(b)	- calculation of moles of NaOH - calculation of mass of NaOH		Example of calculation: $\begin{aligned} & \left(\text { moles } \mathrm{NaOH}=0.140 \times \frac{250}{1000}\right. \\ & =0.035(0)(\mathrm{mol}) \\ & =40(.0) \times 0.035(0)=1.4(0)(\mathrm{g}) \end{aligned}$ Correct answer with or without working scores 2 marks Allow TE for M2 on moles of NaOH Alternative route, allow M1 for conversion of concentration to $5.6 \mathrm{~g} \mathrm{dm}^{-3}$ Ignore SF	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{6 (c) (i)}$	An explanation that makes reference to the following points:		(2)
	• (because the) sodium hydroxide has been diluted \quad (1)	Allow Fewer moles of sodium hydroxide present / some sodium hydroxide will have been removed	

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{6 (c) (i i)}$	An explanation that makes reference to the following points: M1 no effect (on the titre) M2 because the (number of) moles of sodium hydroxide is unaffected	M2 depends on M1	
(1)	Allow base / alkali / hydroxide (ions) Allow amount / mass of sodium hydroxide is unaffected		

Question Number	Acceptable Answers	Additional Guidance	Mark
6(c)(iii)	- calculation of percentage uncertainty in burette volume - calculation of percentage uncertainty in volumetric flask volume and in pipette volume - identification of volume with the lowest percentage uncertainty	Example of calculation: $\begin{aligned} & \frac{2 \times(\pm) 0.05}{10.20} \times 100 \%=(\pm) 0.980392156 \% \\ & \frac{(\pm) 0.30}{250.0} \times 100 \%=(\pm) 0.12 \% \end{aligned}$ and $\begin{equation*} \frac{(\pm) 0.040}{10.0} \times 100 \%=(\pm) 0.4 \% \tag{1} \end{equation*}$ Volumetric flask has the lowest uncertainty Allow TE for identification in M3 Allow ANY number of SF in answer, from 1 SF up to calculator value	(3)

Question Number	Acceptable Answers	Additional Guidance	Mark
6(d)(i)	- left-hand side of equation correct - right-hand side of equation correct (1)	Example of equation $\begin{equation*} \mathrm{HOOCCH}=\mathrm{CHCOOH}+2 \mathrm{NaOH} \rightarrow \mathrm{NaOOCCH}=\mathrm{CHCOONa}+2 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ ALLOW use of molecular formulae or ionic equation: $\begin{aligned} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}+2 \mathrm{NaOH} \rightarrow & \mathrm{Na}_{2} \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{HOOCCH}=\mathrm{CHCOOH} & +2 \mathrm{OH}^{-}\left(+2 \mathrm{Na}^{+}\right) \rightarrow \\ & -\mathrm{OOCCH}^{2}=\mathrm{CHCOO}^{-}+2 \mathrm{H}_{2} \mathrm{O}\left(+2 \mathrm{Na}^{+}\right) \end{aligned}$ ALLOW Multiples Correct charges Do not award if O-Na covalent bond drawn IGNORE State symbols, even if incorrect	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{6 (d) (i i)}$	An answer that makes reference to the following points:	Mark M1 and M2 independently	(2)
	\bullet (New mean titre) $=20.4(0)\left(\mathrm{cm}^{3}\right) /$ double (the original value)(1)		
	•For structure 2, mole ratio / reacting ratio is $1: 1$ (with NaOH$)(\mathbf{1)}$	Allow structure 2 has $1 \mathrm{COOH} / 1$ acid group	

Question Number	Acceptable Answers			Additional Guidance	Mark
6(e)				3 correct ticks with no crosses scores 1 Ignore descriptions of result in terms of colour (changes) / reactions occurring	(2)
	Structure	Test with Br_{2} water	Test with acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$		
	$\mathrm{HOOCCH}=\mathrm{CHCOOH}$	\checkmark	x		
	$\mathrm{HOCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{COOH}$	\checkmark	\checkmark		
	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	x	\mathbf{x}		
	Left hand column correct (1) Right hand column correct (1)				

Question Number	Acceptable Answers		Additional Guidance	Mark
6(f)(i)	- E-isomer: - Z-isomer:	(1) (1)	ALLOW skeletal or displayed structures ALLOW $-\mathrm{CO}_{2} \mathrm{H}$ IGNORE Connectivity to the -COOH group IGNORE bond angles Award one mark if correct structures are drawn, but E - and Z-isomers labelled the wrong way round Award 1 mark if incorrect molecule used but E - and Z - isomers are correct	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
6(f)(ii)	An answer that makes reference to the following points: - restricted / limited rotation (about the $\mathrm{C}=\mathrm{C}$ double bond)(1) - each carbon atom in the double bond is attached to (two) different atoms / different groups (of atoms) / to a H (atom) and a COOH group	Allow "no rotation" Do not award the carbons are attached to 2 "different molecules" Mark points M1 and M2 independently	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
7(a)	- calculates moles of $\mathrm{X}^{-} / \mathrm{NaOH}$ present in the mixture - calculates moles of HX which remain unreacted - calculates / shows ratio of [HX] to [Xㄹ] OR ratio of moles of HX : X^{-}(as total V cancels) - re-arranges K_{a} or $\mathrm{p} K_{\mathrm{a}}$ expression correctly and substitutes appropriate values - final pH to 2 or 3SF	Example of calculation: $\begin{align*} & \left(\mathrm{moles} \text { of } \mathrm{X}^{-}=\mathrm{mol} \mathrm{NaOH}=\frac{0.8(00) \times 10.5}{1000}\right) \\ & =0.0084(0) / 8.4(0) \times 10^{-3}(\mathrm{~mol}) \tag{1}\\ & \left(\mathrm{moles} \text { of } \mathrm{HX}-\mathrm{mol} \mathrm{NaOH}=\frac{0.92(0) \times 25.0}{1000}-0.0084(0)\right. \\ & =0.023(0)-0.0084(0)) \tag{1}\\ & =0.0146 / 1.46 \times 10^{-2}(\mathrm{~mol}) \\ & {[\mathrm{HX}]=\frac{0.0146}{0.0355} \text { and }\left[\mathrm{X}^{-}\right]=\frac{0.0084(0)}{0.0355}} \\ & =0.411 \text { and } 0.237\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{align*}$ Allow use of the ratio of the moles as above (as total V cancels) $\begin{equation*} \left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times \frac{[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}=5.25 \times 10^{-5} \times \frac{0.411}{0.237} \tag{1} \end{equation*}$ $\left[\mathrm{H}^{+}\right]=9.10443038 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\mathrm{pH}=4.04$ Allow use of pH expression to get answer: $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-\log \frac{[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]} \text {or } \mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$ ALLOW TE M5 for calculation of pH from any $\left[\mathrm{H}^{+}\right]$ Correct answer with no working scores (5)	(5)

Question Number	Acceptable Answers	Additional Guidance	Mark
7(b)(i)	A sketch graph which shows the following: - a starting pH between 2 and 4 (inclusive) - correct general shape and ends at $\mathrm{pH}=12-13$ - (any) vertical at $25 \mathrm{~cm}^{3}$ - vertical between $\mathrm{pH}=6-7$ and $\mathrm{pH}=10-12$	 Vertical must be no more than 5 pH units within these ranges	(4)

Question Number	Acceptable Answers	Additional Guidance	Mark
7(b)(ii)	An explanation that makes reference to the following points: - (Read off) pH at half-neutralisation (point) / pH at 12.5 (cm^{3}) OR $\mathbf{p H}$ at half-equivalence (point) (1) - As $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} / K_{\mathrm{a}}=10^{-\mathrm{pH}}$	May be shown on the sketch graph ALLOW read equivalence vol, add same volume of (propanoic) acid and measure pH M2 dependent on mentioning half equivalent / $12.5 \mathrm{~cm}^{3}$	(2)

(Total for Question 7 = 11 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{8 (a)}$	Any one from:	Ignore any mention of protonation or mechanism for catalysis Do not award additional incorrect types of reaction	(1)
	Catalyst / speeds up reaction / increases rate / increases rate of attainment of equilibrium / lowers activation energy		

Question Number	Acceptable Answers	Additional Guidance	Mark
8(b)(i)	- calculation of moles of H^{+}in $25.0 \mathrm{~cm}^{3}$ - calculation of moles of H^{+}in $250 \mathrm{~cm}^{3}$ flask (1)	Ignore SF throughout 8(b)(i) to 8(c)(ii) except 1 SF, which should be penalised once only Example of calculation: $\begin{align*} & \left(\text { moles } \mathrm{NaOH}=0.200 \times \frac{23.60}{1000}\right) \tag{1}\\ & =0.00472(\mathrm{~mol})\left(=\mathrm{mol} \mathrm{H}^{+} \text {in } 25.0 \mathrm{~cm}^{3}\right) \\ & (=10 \times 0.00472)=0.0472(\mathrm{~mol})\left(\text { in } 250 \mathrm{~cm}^{3}\right) \end{align*}$ Allow TE for M2 on moles of NaOH Correct answer with or without working scores 2 marks	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{8 (b) (\text { ii) }}$	E subtracts moles of H^{+}in HCl from answer to (b)(i)	$0.0472-0.00400=0.0432$ (mol)	(1)
		Allow TE on answer to part (b)(i)	

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{8 (c) (\mathbf { i })}$	- calculation of moles of $\mathrm{CH}_{3} \mathrm{COOH}$ that have reacted	$(0.105-0.0432)=0.0618$	(1)
		Allow TE on part (b)(ii) unless negative value	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(c)(ii)		Example of calculation:	(3)
	- calculation of equilibrium moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$0.0800-0.0618=0.0182$	
	- calculation of equilibrium moles of $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	0.0618	
	- calculation of equilibrium moles of $\mathrm{H}_{2} \mathrm{O}$	$0.111+0.0618=0.1728$	
		Allow TE on answer to part (c)(i) unless negative value	

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{8 (d) (i)}$	$\left(K_{\mathrm{c}}=\right)$	$\left[\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$	
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]$			

Question Number	Acceptable Answers	Additional Guidance	Mark
8(d)(ii)	An explanation that makes reference to the following points: - Same number of moles/molecules on both sides of the equation - (so) volume / V cancels in K_{c} expression	2 marks could be scored by a correct mathematical expression showing V or dm^{3} cancel Allow same number of terms on top and bottom of K_{c} expression Allow units cancel out Allow "all divided by the same volume"	(2)

Question Number	Acceptable Answers		Additional Guidance	Mark
8(d)(iii)	- calculates value of K_{c} - final value of K_{c} quoted to 2 or 3 SF	(1) (1)	Example of calculation $\begin{aligned} & K_{\mathrm{c}}=\frac{(0.0618) \times(0.1728)}{(0.0432) \times(0.0182)}=13.58241758 \\ & =14 / 13.6 \text { (no units) } \end{aligned}$ Correct answer with no working gains full marks Ignore units No TE on wrong K_{c} expression	2

Question Number	Acceptable Answers	Additional Guidance	Mark
8(e)	An explanation that makes reference to the following points: - the equilibrium shifts to the left or the mixture absorbs carbon dioxide from the atmosphere - so the mixture is (becoming more) acidic / the acid reforms	Mark independently Allow no longer alkaline Do not award just "pH decreases"	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark	
$\mathbf{8 (f)}$	An explanation that makes reference to the following points: - carry out / repeat experiment and leave for longer than a week	(1)	Allow repeat experiment and check titres within first week	(2)
	the titre value $/ K_{c}$ value will remain unchanged (if equilibrium has been established)	Allow moles / concentration are unchanged Ignore just "results unchanged"		

Question Number	Acceptable Answers	Additional Guidance	Mark
8(g)	An answer that makes reference to the following points: - $\quad K_{c}$ value will be greater than that calculated in (d)(iii) (1) - because the (forward) reaction is endothermic or backward / reverse reaction is exothermic	M2 depends on M1 Ignore References to the equilibrium position shifting to the right (with increasing temperature)	(2)

