GCE

Chemistry A

H432/02: Synthesis and analytical techniques

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

1. Annotations

Annotation	Meaning
A	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Learried forward 1
L2	Level 2
L3	Level 3
NBOD	Nenefit of doubt not given
SEEN	Ignore
I	

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions)

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
ECF	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument

Question	Answer	Marks	AO element	Guidance
1	C	1	AO2.1	ALLOW 4 (This is the number of structural isomers)
2	B	1	AO1.2	
3	C	1	AO2.2	
4	C	1	AO2.6	
5	D	1	AO2.1	
6	B	1	AO1.2	
7	A	1	AO1.2	
8	C	1	AO2.1	
10	C	1	AO1.2	
11	D	1	AO2.1	
12	B	1	AO2.5	
14	B	1	AO2.1	
15	A	1	AO2.1	
		1	AO1.1	
	Total	15		

Question			Answer	Marks	AO element	Guidance
16	(a)	(i)	σ-bond: Overlap of orbitals between (bonding) atoms \checkmark π-bond: Sideways overlap of (adjacent) p-orbitals \checkmark	2	$\begin{gathered} \mathrm{AO} 1.1 \\ \times 2 \end{gathered}$	ALLOW labelled diagrams IGNORE the type of orbital for σ-bond DO NOT ALLOW pi-orbital
		(ii)	$\begin{aligned} & \sigma \text {-bonds: } 9 \checkmark \\ & \pi \text {-bonds: } 2 \checkmark \end{aligned}$	2	$\begin{gathered} \mathrm{AO} 1.2 \\ \times 2 \end{gathered}$	
	(b)	(i)	 Curly arrow from $\mathrm{C}=\mathrm{C}$ bond to H of $\mathrm{H}-\mathrm{Br} \checkmark$ DO NOT ALLOW partial charge on $\mathrm{C}=\mathrm{C}$ Correct dipole shown on $\mathrm{H}-\mathrm{Br}$ AND curly arrow showing breaking of $\mathrm{H}-\mathrm{Br}$ bond \checkmark	4	$\begin{gathered} \hline \mathrm{AO} 1.2 \\ \times 2 \\ \\ \mathrm{AO} 2.5 \\ \times 2 \end{gathered}$	NOTE: curly arrows can be straight, snake like, etc. but NOT double headed or half headed arrows 1st curly arrow must - go to the H atom of $\mathrm{H}-\mathrm{Br}$ AND - start from, OR be traced back to any point across width of $\mathrm{C}=\mathrm{C}$ 2nd curly arrow must - start from, OR be traced back to any part of ${ }^{\delta+} \mathrm{H}-\mathrm{Br}^{\delta-}$ bond AND - go to $\mathrm{Br}^{\delta-}$

Question		Answer	Marks	AO element	Guidance
	(ii)	(major product forms from) most/more stable intermediate/carbocation (major product forms from a) secondary carbocation OR carbocation bonded to more C atoms / more alkyl groups OR carbocation bonded to fewer H atoms \checkmark	2	AO1. 1 AO1.2	For carbocation, ALLOW carbonium ion or cation IGNORE descriptions of the major/minor product in terms of Markownikoff's rule e.g. H atom joins to C with most H IGNORE references to stability of the product ALLOW ORA, i.e. (minor product forms from) least/less stable intermediate/carbocation (minor product forms from a) primary carbocation OR carbocation bonded to less C atoms / less alkyl groups OR carbocation bonded to more H atoms \checkmark
	(iii)	$3 \checkmark$	1	A01.2	
(c)	(i)	Same structural formula AND Different arrangement (of atoms) in space OR different spatial arrangement (of atoms) \checkmark	1	AO1.1	ALLOW structure/displayed/skeletal formula DO NOT ALLOW same empirical formula OR same general formula IGNORE same molecular formula Reference to E / Z isomerism or optical isomerism is not sufficient
	(ii)	Student is not correct AND 2 groups on one carbon atom (of $\mathrm{C}=\mathrm{C}$) are the same OR C-C bond can rotate \checkmark	1	AO3.1	DO NOT ALLOW one side of $\mathrm{C}=\mathrm{C}$

Question		Answer	Marks	AO element	Guidance
(d)	(i)	1 mark for each curly arrow $\checkmark \checkmark$	2	$\begin{gathered} \mathrm{AO} 2.5 \\ \times 2 \end{gathered}$	IGNORE any dipoles shown NOTE: curly arrows can be straight, snakelike, etc. but NOT half headed or double headed arrows Curly arrow from $\mathrm{C}=\mathrm{C}$ bond must start from, OR be traced back to, Lower left: any part of $\mathrm{C}=\mathrm{C}$ bond and go to C-C Upper left: any part of $C=C$ bond and go to gap between $C=C$ and $C=C$
	(ii)		2	$\begin{gathered} \mathrm{AO} 3.2 \\ \times 2 \end{gathered}$	
		Total	17		

Question			Answer	Marks	AO element	Guidance
17	(a)		Formation of Cl• $\mathrm{CClF}_{3} \rightarrow \mathrm{CF}_{3} \cdot+\mathrm{Cl} \cdot \checkmark$ Breakdown of O_{3} $\begin{aligned} & \mathrm{Cl} \cdot+\mathrm{O}_{3} \rightarrow \cdot \mathrm{ClO}+\mathrm{O}_{2} \checkmark \\ & \cdot \mathrm{ClO}+\mathrm{O} \rightarrow \mathrm{Cl} \cdot+\mathrm{O}_{2} \checkmark \end{aligned}$	3	AO2.5 A01.1 $\times 2$	IGNORE dots for formation C / \bullet, i.e. ALLOW CClF $_{3} \rightarrow \mathrm{CF}_{3}+\mathrm{Cl}$ DO NOT ALLOW ECF Dots required in this equation IGNORE O $+\mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2}$ ALLOW 1 mark if both equations are correct by atom but dot(s) missing or incorrect
	(b)	(i)		1	AO2.5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous 'End bonds' MUST be shown DO NOT ALLOW more than 1 repeat unit IGNORE brackets IGNORE n
		(ii)	More points of contact / more surface interaction (between molecules) AND Stronger/more dipole(-dipole) interactions More energy needed to break the intermolecular forces \checkmark	2	$\begin{gathered} \mathrm{AO} 2.1 \\ \times 2 \end{gathered}$	Both answers need to be a comparison IGNORE surface area ALLOW more electrons ALLOW induced/permanent dipole interactions ALLOW London forces ALLOW van der Waals' forces (as permanent dipole-dipole and induced dipole-dipole interactions are present within this polymer) IGNORE IDID

Question			Answer	Marks	AO element	Guidance
18	(a)	(i)	Non-superimposable mirror images (about a chiral centre) \checkmark	1	A01.1	
		(ii)	Correct groups attached to chiral C of alanine seen once e.g. Two 3D structures of alanine that are mirror images AND correct connectivity in both i.e.	2	$\begin{gathered} \mathrm{AO} 2.1 \\ \times 2 \end{gathered}$	Each structure must have four central bonds with at least two wedges. For bond into paper accept: ALLOW two 3D structures with 2 groups swapped e.g. IF CH_{3} is shown as ' R ' ALLOW 1 mark for two 3D structures with correct connectivity that are mirror images e.g.

Question		Answer	Marks	AO element	Guidance
	(iii)	$4 \checkmark$	1	AO2.2	
(b)			7	$\begin{gathered} \mathrm{AO} 1.2 \\ \times 4 \\ \\ \mathrm{AO} 2.5 \\ \times 3 \end{gathered}$	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW names of reagents DO NOT ALLOW OH- for HObut ALLOW ECF for subsequent use in (b) For hydrolysis, ALLOW dilute acid ALLOW alkaline conditions followed by protonation of carboxylate i.e. $\mathrm{NaOH}(\mathrm{aq}) / \mathrm{OH}^{-}(\mathrm{aq})$ AND $\mathrm{H}^{+}(\mathrm{aq}) / \mathrm{HCl}(\mathrm{aq})$ ALLOW HBr for $\mathrm{NaBr} / \mathrm{H}_{2} \mathrm{SO}_{4}$

Question		Answer		Marks	AO	Guidance
(c)	(i)	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \checkmark$		1	AO2.1	ALLOW C, H and O in any order
	(ii)	FIRST CHECK ANSWER ON THE ANSWER LINE If answer $=1.17 \times 10^{21}$ award 3 marks $\begin{aligned} & M(\text { ibuprofen })=206 \\ & n(\text { ibuprofen })=\frac{400 \div 1000}{206}=1.94 \times 10^{-3}(\mathrm{~mol}) \end{aligned}$ $\begin{aligned} \text { Number of molecules } & =1.94 \times 10^{-3} \times 6.02 \times 10^{23} \\ & =1.17 \times 10^{21} \text { to } 3 \mathbf{S F} \checkmark \end{aligned}$		3	$\begin{gathered} \mathrm{AO} 2.2 \\ \times 3 \end{gathered}$	ALLOW ECF from (c)(i) Calculator: $1.941747573 \times 10^{-3}$ ALLOW ECF from n(ibuprofen) 3 SF essential
(d)	(i)			2	$\begin{gathered} \mathrm{AO} 3.2 \\ \times 2 \end{gathered}$	IGNORE small slip in carbon chains ALLOW
	(ii)	More soluble in water \checkmark		1	AO3.1	Answer must be a comparison ALLOW dissolve faster/quicker IGNORE absorbed more quickly (given in question)
			Total	18		

Question	Answer	Marks	AO element	Guidance
	There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Calculation of the mass of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}$ is partly correct OR Attempts to calculate mass of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}$ but makes little progress AND Planned synthesis includes formation of the intermediate $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CN}$ with the reagent identified OR Planned synthesis includes both steps with some of the reagents identified OR Attempts equations for both steps but these may contain errors OR Describes one step of the synthesis with reagent(s) and equation mostly correct There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.			Synthesis: reagents and conditions Stage 1: Formation of intermediate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CN}$ - Reagents: $\mathrm{CN}^{-}($(ethanol) - Equation: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CN}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{Cl}^{-}$ OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{NaCN} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{NaCl}$ (OR use of KCN) Stage 2: Formation of A, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$ - Reagents: $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$ (ALLOW 'acid hydrolysis' - Equation: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}+$ $\mathrm{NH}_{4}{ }^{+}$ OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}+$ $\mathrm{NH}_{4} \mathrm{Cl}$
	Total	18		

Question		Answer	Marks	AO element	Guidance
					DO NOT ALLOW mark for intermediate if phenolic O^{-} is missing curly arrow must start from, OR be traced back to, any part of $\mathrm{C}-\mathrm{H}$ bond and go inside the 'hexagon'
	(ii)	$\mathrm{OH}^{-}:$base \checkmark CO_{2} : electrophile OR electron pair acceptor \checkmark	2	$\begin{gathered} \mathrm{AO} 2.1 \\ \times 2 \end{gathered}$	ALLOW alkali IGNORE 'nucleophile', 'donates electron pair' IGNORE lone pair acceptor (No lone pair involved)
	(iii)	One ester link in organic product Correct structure of organic product Correct equation AND balanced \checkmark	3	AO3.1 AO3.2 AO2.6	

Question		Answer	Marks	AO element	Guidance
(b)	(i)	Dissolve in hot water/solvent Minimum amount of solvent Cool AND Filter AND (leave to) dry \checkmark All three needed	3	$\begin{gathered} \mathrm{AO} 3.3 \\ \times 3 \end{gathered}$	ALLOW any solvent IGNORE - Initial filtering - hot filtration to remove insoluble impurities DO NOT ALLOW adding of a drying agent (e.g. MgSO_{4})
	(ii)	 Molecular formula $=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}$ AND use of $M=229.0$ (directly linked to molecular formula) \checkmark Any trisubstituted $-\mathrm{NO}_{2}$ substituted phenol that is consistent with $M=229.0 \checkmark$ Evidence for substitution 2,4,6 OR 3,4,5 substituted phenol AND 4 peaks/ C environments from ${ }^{13} \mathrm{C}$ NMR \checkmark 2,4,6 substituted phenol AND directing effects of $-\mathrm{OH} \checkmark$	6	AO 1.2 $\times 2$ $\times 2$ AO3.1 AO3.2 AO3.1 $\times 2$	ALLOW alternative approach for empirical formula and evidence that 229 is equal to $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}$ DO NOT ALLOW ECF from the empirical formula with the wrong molar ratio 2,4,6 $3,4,5$ 2,4,6
		Total	20		

Question	Answer	Marks	AO element	Guidance
	There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.			
	Total	6		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

