Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics

Further Mathematics Level 2

8360/1

Practice Paper Set 1

Paper 1

Non-Calculator

For this paper you must have:

mathematical instruments.

You may **not** use a calculator.

Time allowed

1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.

For Exam	For Examiner's Use			
Examine	Examiner's Initials			
Pages	Mark			
3				
4 - 5				
6 - 7				
8 - 9				
10 - 11				
12 - 13				
14 - 15				
TOTAL				

Volume of sphere
$$=$$
 $\frac{4}{3}\pi r^3$

Surface area of sphere = $4\pi r^2$

Volume of cone = $\frac{1}{3}\pi r^2 h$ Curved surface area of cone = $\pi r l$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

 $Cosine rule \ a^2 = b^2 + c^2 - 2bc \cos A$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

Trigonometric Identities

 $\tan \theta \equiv \frac{\sin \theta}{\cos \theta} \qquad \qquad \sin^2 \theta + \cos^2 \theta \equiv 1$

Do not write outside the box

Turn over **>** 8360/1

8

6	Given that sin $\theta = \frac{3}{5}$, work out the two possible values of cos θ .			
	Answer and and (3 marks)			
7	Here are the equations of three lines.			
	$y = \frac{1}{2}x + 11$ $y = \frac{1}{3}x + 14$ $y = 2x - 16$			
	Do all three lines meet at a common point?			
	Show how you decide.			
	(5 marks)			
Turn over for the next question				

ŝ

Turn over ►

10	Simplify fully $\frac{3x^2 - x - 14}{9x^2 - 4} \div \frac{x + 2}{3x^2 + 2x}$
	Answer

-1

Γ

11	Show that the tangents to the curve $y = x^3 + 3x^2 + 3x + 1$ at $x = 1$ and $x = -3$ are parallel.
	(E marka)
	(5 marks)

Turn over for the next question

12	Make <i>x</i> the subject of $\frac{12}{y} = \frac{4}{x} - \frac{1}{3}$
	Answer (5 marks)
13	$x^{3} + 2x^{2} - 9x - 18 \equiv (x^{2} - a^{2})(x + b)$ where <i>a</i> and <i>b</i> are integers. Work out the three linear factors of $x^{3} + 2x^{2} - 9x - 18$
	Answer (3 marks)

	10	Do not v outside
14	The diagram shows the unit square OABC.	box
	y	
	A	
	-1 O 1 x	
	-1	
14 (a)	The image of OABC after transformation by the matrix $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ is OA'B'C'.	
	Draw and label <i>OA</i> ' <i>B</i> ' <i>C</i> '.	
	(2 marks)	
14 (b)	The unit square OABC is transformed by reflection in the line $y = x$ followed by enlargement about the origin with scale factor 2.	
	What is the matrix of the combined transformation?	
	······	
	Answer ((4 marks)	

END OF QUESTIONS

	Not drawn accurately
2x+4 $2x+1$	
$A \xrightarrow{60^{\circ}} C$	
Use the cosine rule to show that $x = 4 + 2\sqrt{7}$	
	(6 marks)

В

15 (b)

In triangle ABC, angle $BAC = 60^{\circ}$

