

GCE

Further Mathematics B (MEI)

Y421/01: Mechanics major

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Annotations and abbreviations

Annotation in scoris	Meaning
✓ and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0,B1	Independent mark awarded 0, 1
Е	Explanation mark 1
SC	Special case
٨	Omission sign
MR	Misread
BP	Blank page
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

Q	uestio	n	Answer	Marks	AOs	Guidance
1			J = 0.25(4.2 - (-5))	M1	3.3	Use of Impulse = change in momentum
			J = 0.02F	M1	3.3	Use of Impulse = Ft
			$F = \frac{2.3}{100} = 115 (N)$	A1	1.1	cao
			$r = \frac{113(11)}{0.02}$			
				[3]		
2			$10m\bar{x} = 1(3m) + 2(5m) + 5(2m)$	M1	1.1	Use of $\overline{x} \sum m_i = \sum x_i m_i$
			x = 2.3	A1	1.1	cao
			10my = 2(3m) + (-2)(5m) + 3(2m)	M1	1.1	Use of $\overline{y} \sum m_i = \sum y_i m_i$
			$\overline{y} = 0.2$	A1	1.1	cao
				[4]		
3	(a)		T = 4g	B1	1.1	Resolve vertically (possibly implied by subsequent working)
			$\frac{\lambda (0.02)}{0.3} = 4g$	M1	3.3	Use of Hooke's law with their 4g
			$\lambda = 588(N)$	A1	1.1	cao oe e.g. 60g
				[3]		
3	(b)		e.g. spring stretched beyond its elastic limit	B1	2.2b	oe (any correct equivalent statement for
			e.g. Hooke's law no longer applies			why the extension of the spring may not
				-43		be 0.1 m)
				[1]		

Question	Answer	Marks	AOs	Guidance	
4	DR				
	$A = \int_{1} \left(4 - x_{2} \right) - 3 \sqrt{x} dx = \left[4x - \frac{1}{3} x^{3} - 2x^{\frac{3}{2}} \right]^{1}$	M1*	2.1	Correct integral expression for the area and attempt to integrate (at least two terms correct)	Ignore limits for first two M marks
	$A = 4 - \frac{1}{3} - 2 = \frac{5}{3}$	A1	1.1		SC M1 A0 if correct integral and value seen but with no
	$A\overline{x} = \int_0^1 4x - x^3 - 3x^2 dx = \left[2x^2 - \frac{1}{4}x^4 - \frac{6}{5}x^2 \right]_0^1$ $Ax = 2 - \frac{1}{4} - \frac{6}{5} = \frac{11}{20}$	M1*	1.1	Correct integral expression for $A\bar{x}$ and attempt to integrate (at least two terms correct)	intermediate working
	$Ax = 2 - \frac{1}{4} - \frac{6}{5} = \frac{11}{20}$	A1	1.1		SC M1 A0 if correct integral and value seen but with no intermediate working
	$x = \frac{Ax}{A} = \frac{\frac{1}{20}}{\frac{5}{3}}$	M1dep*	1.1	Correct use of $x = \frac{Ax}{A}$	Dependent on both previous M marks
	$=\frac{33}{100}$	A1	2.2a	oe	This mark can be awarded even if the two previous A marks were not awarded
		[6]			

Question	Answer	Marks	AOs	Guidance	
5	Let w_A and w_B be the horizontal components of the				
	velocity of A and B after collision				
	$w_{\rm B} = 2.5$	B1	1.2		
	$2(6) + 4(0) = 2w_A + 4(2.5)$	M1 A1	3.3	Use of conservation of linear momentum (parallel to the line of centres) – correct number of terms Allow with $w_{\rm B}$ instead of 2.5	For reference: $w_A = 1$
	2(0) 1 1(0) 2/14 1 1(2.3)	M1	3.3	Use of Newton's experimental law (parallel to the line of centres) – correct	A CONTRACTOR OF A CONTRACTOR O
	$w_{\rm A} - 2.5 = -e(6 - 0)$	A1	1.1	number of terms Use of NEL must be consistent with CLM – allow with w_B instead of 2.5 and possibly their w_A	
	e = 0.25	A1 [6]	1.1		

Q	uestio	on Answer	Marks	AOs	Guidance
6	(a)	$F = MLT^{-2}$	B1	1.2	
			[1]		
6	(b)	$[G] = M^{-1}L^3T^{-2}$	B1		May use $F = \frac{Gm_1m_2}{d^2}$ to obtain the
			[1]		dimensions of G
6	(c)	1	M1	3.1a	SC B1 for
		$G = (6.67 \times 10^{-11}) \times 0.454 \times \frac{1}{(0.305)^3}$			$G = \left(6.67 \times 10^{-11}\right) \times \frac{1}{0.454} \times (0.305)^3$
					$=4.17\times10^{-12}$
		$G = 1.07 \times 10^{-9} \text{ (lb}^{-1} \text{ ft}^3 \text{ s}^{-2}\text{)}$	A1	1.1	awrt 1.07×10 ⁻⁹
			[2]		
6	(d)	$\left[\frac{kGM}{r} \right]_{=} = \frac{\left(M^{-1}L^{3}T^{-2} \right)M}{L}$	M1	2.1	Attempt to calculate the dimension of either $\frac{kGM}{r}$ or its square root with $[k] = 1$ and two other terms correct
		$\left \int \sqrt{\frac{kGM}{r}} \right = LT^{-1}$	A1	1.1	$ \operatorname{Or} \left[\frac{kGM}{r} \right] = L^2 T^{-2} $
		$[v] = LT^{-1}$ so the formula is dimensionally consistent	A1	2.2a	Or allow showing consistency for $v^2 = \frac{kGM}{r}$
			[3]		

0	uestion	Answer	Marks	AOs	Guidance	
6		$11186 = \sqrt{\frac{k\left(6.67 \times 10^{-11}\right)\left(5.97 \times 10^{24}\right)}{6\ 371000}}$	M1	3.4		
		$k \approx 2$ $v = \sqrt{\frac{2(6.67 \times 10^{-11})(6.39 \times 10^{23})}{3389500}}$	A1 M1	1.1 1.1		k = 2.0019677
		$v = 5015 (\text{m s}^{-1})$	A1	2.2a	Allow to 3 sf or better (allow 5015 to 5017 inclusive)	If using $k = 2.0019677$ expect to see 5017.346122
7	(a)	Driving force of engine is <u>kmg</u>	[4] B1	1.1		
		$\frac{kmg}{v} - mg = mv \frac{dv}{dx}$ $kg - gv = v^2 \frac{dv}{dx} \Rightarrow v^2 \frac{dv}{dx} = (k - v)g$	M1 A1 [3]	3.3 2.2a	Use of N2L, correct number of terms, allow D (oe) for $\frac{kmg}{v}$ and a (oe) for the acceleration AG – sufficient working must be shown as answer given	

Q	uestio	n Answer	Marks	AOs	Guidance	
7	(b)	$gx = k^{2} \ln \left(\frac{k}{k-v}\right) - kv - \frac{1}{2}v^{2}$ $x = 0, v = 0 \Rightarrow g(0) = k^{2} \ln \left(\frac{k}{k-0}\right) - k(0) - \frac{1}{2}(0)^{2} \text{ so}$	B1	1.1		
		initial conditions are consistent with given equation $g\frac{dx}{dv} = k^{2} \begin{bmatrix} 1 & k(k-v)^{-2} \\ \frac{k}{k-v} \end{bmatrix} - k - v$	M1* A1	2.1	Attempt to differentiate using chain rule cao oe e.g. $g = k^{2} \left(\frac{k - v}{k} \right) \left(\frac{-k \left(-\frac{dv}{dx} \right)}{(k - v)^{2}} \right) - k \frac{dv}{dx} - v \frac{dv}{dx}$	Or equivalent (e.g. solving using separation of variables)
		$g\frac{\mathrm{d}x}{\mathrm{d}v} = \frac{-kv + v^2 - k^2 + kv + k^2}{(k - v)}$	M1dep*	1.1	Correct method to obtain an expression for $\frac{dx}{dv}$ as a single fraction or as a single fraction with $\frac{dv}{dx}$ e.g. $g = \left \frac{k^2 - k^2 + kv - kv + v^2}{k - v} \right \frac{dv}{dx}$	
		$v^{2} = g(k - v)\frac{dx}{dv} \Rightarrow v^{2}\frac{dv}{dx} = (k - v)g$	A1 [5]	2.2a	\mathbf{AG} – sufficient working required as answer given	

Q	uestio	n	Answer	Marks	AOs	Guidance
7	(c)		Work done by engine is kmgt	B1	1.1	
			$kgmt = \frac{1}{2}mV^2 + mgx$	M1*	3.3	Use work-energy principle – correct number of terms
			$kgt = \frac{1}{2}V^2 + k^2 \ln\left(\frac{k}{k - V}\right) - kV - \frac{1}{2}V^2$	M1dep*	3.4	Use given result from (b) in work-energy equation to eliminate <i>x</i>
			$kgmt = \frac{1}{2}mV^{2} + mgx$ $kgt = \frac{1}{2}V^{2} + k^{2}\ln\left(\frac{k}{k - V}\right) - kV - \frac{1}{2}V^{2}$ $kgt = k^{2}\ln\left(\frac{k}{k - V}\right) - kV \Rightarrow t = \frac{k}{g}\ln\left(\frac{k}{k - V}\right) - \frac{V}{g}$	A1	2.2a	AG – sufficient working required as answer given
				[4]		SC if correctly found by solving $\frac{kmg}{v} - mg = m\frac{dv}{dt} \text{ this can score } 3/4 \text{ max.}$
8	(a)			B1	1.2	All remaining forces adding on correctly
						(with arrows to indicate directions) to the
				[1]		figure in the Printed Answer Booklet
8	(b)			M1*	3.3	Resolve horizontally and vertically
						(correct number of terms in both equations)
			$F_{\rm D} + R_{\rm C} = W$	A1	1.1	Where $R_{\rm C}$ is the normal contact force at
			$R_{\rm D} = F_{\rm C}$			C, etc.
			$F_{\rm D} = \frac{1}{3} R_{\rm D}$ and $F_{\rm C} = \frac{1}{3} R_{\rm C}$	B1	3.4	Correct use of $F = \mu R$ at C and D
			$\frac{1}{3}F_{C} + R_{C} = W \Rightarrow \frac{1}{9}R_{C} + R_{C} = W$	M1dep*	3.4	Combine results to get an equation in $R_{\rm C}$ only
			$R_{\rm C} = \frac{9}{10}W$	A1	1.1	
				[5]		

Q	uestio	Answer	Marks	AOs	Guidance	
8	(c)		M1*	3.1b	Taking moments about D (or any other	
					equivalent point) – correct number of	
					terms	
		$(r + h\sin\theta)W + (r + 2h\cos\theta)F_{\rm C} = (r + 2h\sin\theta)R_{\rm C}$	A1	1.1	oe	
		$(r + h\sin\theta)W + (r + 2h\cos\theta)F_{C} = (r + 2h\sin\theta)R_{C}$ $(r + h\sin\theta)W + (r + 2h\cos\theta)\left(\frac{3}{10}W\right)$ $= (r + 2h\sin\theta)\left(\frac{9}{10}W\right)$	M1dep*	3.4	Substitute expressions for $F_{\rm C}$ and $R_{\rm C}$	
		$r = h(2\sin\theta - 1.5\cos\theta)$	A1	1.1		
		$2h\sin\theta - 1.5h\cos\theta > 0$	M1	2.3	Setting their expression for $r > 0$	
		$4\sin\theta - 3\cos\theta > 0 \Rightarrow \tan\theta > \frac{3}{4}$	A1	2.2a	AG	
		$\frac{4\sin\theta - 3\cos\theta > 0 \rightarrow \tan\theta > \frac{1}{4}}{4}$				
			[6]			

estio	Answer	Marks	AOs	Guidance	
(a)	$\ddot{x} = -g \sin \alpha$, $\ddot{y} = -g \cos \alpha$	B1	2.1		
` /		M1*	3.4	Attempt to integrate (twice) and use of	
				initial conditions	
	$\dot{x} = 5\cos\theta - gt\sin\alpha$, $\dot{y} = 5\sin\theta - gt\cos\alpha$	A1	1.1		
	$x = 5t\cos\theta - 0.5gt^2\sin\alpha$	A1	1.1	Or M1 for use of $s = ut + \frac{1}{at^2}$ parallel	Similarly M1 A1 for
				$\frac{1}{2}$	correct expression for
	$y = 3t \sin \theta = 0.3gt \cos \theta$			to line of greatest slope and then $A1$ for correct expression for x	y (following SUVAT perpendicular to slope)
	$v = 0 \Rightarrow t = \dots$	M1den*	3.3	Sets $v = 0$ and solve for t	siope)
		_		Soldy of this solve for v	
		111	1.1		
		M1	3.1	Substitute expression for t into equation	Dependent on both
	$x = 5 \frac{10\sin\theta}{\cos\theta} \cos\theta - 0.5g \frac{10\sin\theta}{\cos\theta} \sin\alpha$	1411	3.4	1	previous M marks
					previous ivi marks
	$x = \frac{50 \sin \theta}{\cos \theta} \left(\cos \theta \cos \alpha - \sin \theta \sin \alpha \right)$	A1	2.2a	AG	
	$g\cos^2 \alpha$				
	$\rightarrow OR - \frac{50\sin\theta \cos(\theta + \alpha)}{2}$				
	$g\cos^2\alpha$				
		[8]			
		(a) $\ddot{x} = -g \sin \alpha$, $\ddot{y} = -g \cos \alpha$	(a) $ \ddot{x} = -g \sin \alpha, \ \ddot{y} = -g \cos \alpha $ $ \ddot{x} = 5 \cos \theta - g t \sin \alpha, \ \dot{y} = 5 \sin \theta - g t \cos \alpha $ $ x = 5 t \cos \theta - 0.5 g t^2 \sin \alpha $ $ y = 5 t \sin \theta - 0.5 g t^2 \cos \alpha $ A1 A1 $ t = \frac{10 \sin \theta}{g \cos \alpha} $ $ x = 5 \left(\frac{10 \sin \theta}{g \cos \alpha} \right) \cos \theta - 0.5 g \left(\frac{10 \sin \theta}{g \cos \alpha} \right)^2 \sin \alpha $ $ x = \frac{50 \sin \theta}{g \cos^2 \alpha} \left(\cos \theta \cos \alpha - \sin \theta \sin \alpha \right) $ $ \Rightarrow OR = \frac{50 \sin \theta \cos(\theta + \alpha)}{g \cos^2 \alpha} $ A1 A1 A1 A1	(a) $ \ddot{x} = -g \sin \alpha, \ \ \ddot{y} = -g \cos \alpha $ $ \ddot{x} = -g \sin \alpha, \ \ \ddot{y} = -g \cos \alpha $ $ \ddot{x} = 5 \cos \theta - g t \sin \alpha, \ \ \dot{y} = 5 \sin \theta - g t \cos \alpha $ $ A1 \qquad 1.1 $ $ x = 5t \cos \theta - 0.5 g t^2 \sin \alpha $ $ y = 5t \sin \theta - 0.5 g t^2 \cos \alpha $ $ M1 dep^* \qquad 3.3 $ $ t = \frac{10 \sin \theta}{g \cos \alpha} $ $ x = 5 \left(\frac{10 \sin \theta}{g \cos \alpha} \right) \cos \theta - 0.5 g \left(\frac{10 \sin \theta}{g \cos \alpha} \right)^2 \sin \alpha $ $ x = \frac{50 \sin \theta}{g \cos^2 \alpha} \left(\cos \theta \cos \alpha - \sin \theta \sin \alpha \right) $ $ \Rightarrow OR = \frac{50 \sin \theta \cos(\theta + \alpha)}{g \cos^2 \alpha} $ $ A1 \qquad 2.2a $	(a) $\ddot{x} = -g \sin \alpha$, $\ddot{y} = -g \cos \alpha$ B1

Q	uestio	1 Answer	Marks	AOs	Guidance	
9	(b)	$\sin\theta\cos(\theta + \alpha) = \frac{1}{2}(\sin(2\theta + \alpha) - \sin\alpha)$	M1	1.1	Use of given identity to re-write numerator from (a) as a difference of two sines	
		$OR = \frac{25}{g \cos^2 \alpha} \left(\sin(2\theta + \alpha) - \sin \alpha \right)$ $R_{\text{max}} = \frac{25}{8 \left(1 - \sin \alpha \right)} \left(1 - \sin \alpha \right)$	A1	1.1		
		$R = \frac{25}{(1-\sin\alpha)}$	A1	3.1a	Use of correct trig. identity and setting	$R_{\rm max}$ occurs when
		$\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{2}$ $\frac{1}{2}$			$\sin(2\theta + \alpha)$ equal to 1 – oe e.g.	$\sin(2\theta + \alpha) = 1$
					$R_{\text{max}} = \frac{25}{g\left(1 + \sin\alpha\right)}$	
					$\max \overline{g(1+\sin\alpha)}$	
			[3]			
9	(c)	$\frac{25}{g(1+\sin\alpha)} = 1.8 \text{ or } \frac{25(1-\sin\alpha)}{g(1-\sin^2\alpha)} = 1.8$	M1*	3.4	Setting their expression equal to 1.8	Expression must only
		$g(1+\sin\alpha)$ $g(1-\sin^2\alpha)$				contain $\sin \alpha$ terms
		$25 = 1.8 \Rightarrow \sin \alpha =$	M1dep*	1.1	Attempting to solve for $\sin \alpha$ or α - for	If solving a 3TQ in
		$\frac{25}{g(1+\sin\alpha)} = 1.8 \Rightarrow \sin\alpha = \dots$			reference $\sin \alpha = \frac{184}{441}$ or $\alpha = 24.660053$	sine then must solve
					(or 0.430399 in radians)	using a correct method
		$\theta = 45 - 0.5 \alpha$	M1	3.1a	Follow through their α	
		$\theta = 32.7$	A1	1.1		32.6699733 or
						0.5701986 (in
			F.41			radians)
			[4]			

Question	Answer	Marks	AOs	Guidance	
10 (a)	[At B,] KE = $\frac{1}{2}mu^2$, PE = 0	B1	1.1		Note that the reference
	$\frac{1}{2}$				level for zero GPE
	1				might be taken at C
	[At θ ,] KE = $\frac{1}{2}mv^2$, PE = $mga(1-\cos\theta)$	B1	1.1		
		M1*	3.3	Use of conservation of energy – correct number of terms	
	$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mga\left(1 - \cos\theta\right)$	A1	1.1	cao	
	$\frac{1}{2}mu^{2} = \frac{1}{2}mv^{2} + mga(1 - \cos\theta)$ $R - mg\cos\theta = \frac{mv^{2}}{a}$	M1*	3.3	N2L radially with correct number of	
	$R - mg\cos\theta = {a}$			terms and weight resolved	
	$R - mg \cos\theta = \frac{m}{2} \left(u^2 - 2ga \left(1 - \cos\theta \right) \right)$	M1dep*	3.4	Substitute an expression for v^2	
	$R - mg \cos\theta = \frac{m}{a} \left(u^2 - 2ga \left(1 - \cos\theta \right) \right)$ $R = m \left(3g \cos\theta - 2g + \frac{u^2}{a} \right)$	A1	1.1		
		[7]			

Questio		Marks	AOs	Guidance	
10 (b)	Before collision at C, $\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mga$	M1	3.4	Substituting $\theta = \frac{\pi}{2}$ into their	
	After collision at C, speed of P is $\sqrt{u^2 - 2ga}$	A1	1.1	conservation of energy equation from (a)	
	After collision at C, speed of P is $e\sqrt{u^2 - 2ga}$ $\frac{1}{2}mv^{\frac{B}{2}} = mga + \frac{1}{2}m\left(e\sqrt{u - 2ga}\right)^{\frac{2}{2}}$	M1	3.1b	Conservation of energy to find an expression for the speed of P at B	Where v_B is the speed of P at B
	$v_{\rm B}^2 = 2ga + e^2 \left(u^2 - 2ga\right)$	241	2.41		
	$\int_{B}^{1} \frac{1}{2} mv^{2} - \frac{1}{2} mv^{2} = Fb$	M1	3.1b	Work-energy principle for motion between B and A	
	$m\left(2ga + e^2\left(u^2 - 2ga\right)\right) - 2bF \ge 0$	M1	2.5	Set $v_A \ge 0$ and substitute for v_B^2	
	$Fb \le mga + \frac{1}{2}me^{2}u^{2} - me^{2}ga$	A1	2.2a	k need not be stated explicitly	
	$\Rightarrow Fb \le \frac{1}{2}m \left[e^2u^2 + 2(1-e^2)ga\right], \text{ so } k=2$				
	2 L	[6]			
11 (a)		M1*	3.3	Conservation of linear momentum with correct number of terms	Where v_A is the speed of A after 1st impact and similarly for v_B
	$4V = 4v_{\rm A} + 3v_{\rm B}$	A1	1.1	cao	
		M1*	3.3	Newton's experimental law with correct number of terms	
	$v_{\rm A} - v_{\rm B} = -eV$	A1	1.1	Must be consistent with CLM	
		M1dep*	1.1	Solve the simultaneous equations to find both speeds	
	$v_{\rm A} = \frac{V(4-3e)}{7}$ and $v_{\rm B} = \frac{4V(1+e)}{7}$	A1	1.1		
		[6]			

Question	Answer	Marks	AOs	Guidance	
11 (b)	Let θ be the angle subtended by A in time t For A, $t = \frac{r\theta}{\frac{V(4-3e)}{7}}$	M1	3.1b	Use of $s = ut$ with their v_A and $s = r\theta$	Where <i>r</i> is the radius of the circular groove
	For B, $t = \frac{2\pi r + r\theta}{\frac{4V(1+e)}{7}}$	M1	1.1	Use of $s = ut$ with their v_B and $s = 2\pi r + r\theta$	
	$\frac{2\pi + \theta}{4V(1+e)} = \frac{\theta}{V(4-3e)}$ $\theta = \frac{2\pi (4-3e)}{2\pi (4-3e)}$	M1	3.4	Equate expressions for t to form an equation in terms of θ , V and e	
	$a - \frac{2\pi (4 - 3e)}{2}$	A1	2.2a	AG	
	7e	F 41			
	Alternative method	[4]			
	ALT: $v_{\rm B} - v_{\rm A} = \frac{4V(1+e)}{7} - \frac{V(4-3e)}{7} = eV$	M1*		Difference in speeds calculated	
	Time for B to catch up to A is $\frac{2\pi r}{eV}$	M1dep*		Using their eV	Where <i>r</i> is the radius of the circular groove
	$d_{A} = \frac{2\pi r}{eV} {V(4-3e) \choose 7} = \frac{2\pi r}{7e} (4-3e)$	M1		Where d_A is the distance travelled by A	ě
	$\theta = \frac{2\pi r (4 - 3e)}{7er} = \frac{2\pi (4 - 3e)}{7e}$	A1		AG	

Question	Answer	Marks	AOs	Guidance	
11 (c) (i)	$3w_{\rm B} + 4w_{\rm A} = \frac{12}{7}V(1+e) + \frac{4}{7}V(4-3e)$	M1*	3.3	CLM correct number of terms using their expressions from (a)	Where w_A is the speed of A after the second collision
	$ w - w = -e \left(\frac{4}{7} V (1+e) - \frac{1}{7} V (4-3e) \right) $	M1*	3.3	NEL correct number of terms	
	$3w_{\rm B} + 4w_{\rm A} = 4V$ and $w_{\rm B} - w_{\rm A} = -e^2V$	A1	1.1	oe	
		M1dep*	1.1	Solve simultaneously for $w_{\rm B}$	
	$w_{\rm B} = \frac{4}{7}V\left(1 - e^2\right)$	A1	1.1	cao	For reference: $w_{A} = \frac{1}{7}V(4+3e^{2})$
		[5]			
11 (c) (ii)	If the collision is perfectly elastic $(e = 1)$ B is brought to rest by the second collision and A is moving with speed V (which is the situation before the first collision)	B1	3.5a	oe correct statement	
		[1]			
12 (a)	PE = -mg(l + e) (while P is at rest)	B1	1.1	Where e is the extension in the string	Taking the horizontal through O as the reference level for zero GPE
	$EPE = \frac{12mge^2}{2l}$	B1	1.1		
	$\frac{6mge^{2}}{l} - mg(l + e) = 0$ $6e^{2} - el - l^{2} = 0$ $(3e + l)(2e - l) = 0$	M1*	3.3	Conservation of energy with correct number of terms	
	$6e^2 - el - l^2 = 0$	M1dep*	1.1a	Solving three-term quadratic in <i>e</i>	
	$(3e+l)(2e-l)=0$ $e = \frac{l}{2} \Rightarrow \text{ length of string is } \frac{1}{2}l+l = \frac{3}{2}l$	A1	2.2a	AG	
		[5]			

Q	uestio	n	Answer	Marks	AOs	Guidance	
12	(b)		$mg - T = m\ddot{x}$	M1	3.3	N2L vertically with correct number of	
			10	N/1	2.4	terms	
			$mg - \frac{12mgx}{l} = m\ddot{x}$	M1	3.4	Use of Hooke's law and substitute for <i>T</i> in N2L	
			i e e e e e e e e e e e e e e e e e e e	A1	2.2a	AG	
			$\ddot{x} + \frac{12g}{l}x = g$ so $\ddot{x} + \omega^2 x = g$ where $\omega^2 = \frac{12g}{l}$	AI	2.2a	AG	
			i	[3]			
12	(c)		$x = y + \frac{g}{\Rightarrow} y + \omega^2 y = 0$	M1	1.1	Use given substitution to form	
			$\frac{1}{\omega^2}$			differential equation in y	
			$y = A\cos\omega t + B\sin\omega t$	A1ft	1.2	Correctly solves their differential	
						equation in y	
			$x = A\cos\omega t + B\sin\omega t + \frac{g}{2}$	A1	1.1	oe e.g. $x = A\cos\omega t + B\sin\omega t + \frac{l}{12}$	
			$t = 0, r = 0 \Rightarrow t = -\frac{g}{g}$	M1	3.4	Use correct initial conditions in their	
			$t = 0, x = 0 \Rightarrow A = \frac{1}{2}$			expression for <i>x</i>	
			$t = 0, x = 0 \Rightarrow A = -\frac{g}{m^2}$ $\frac{1}{2}mv^2 = mgl$	M1*	3.1b	Use conservation of energy to find speed	
			Z			$v_{\rm P}$ of P at time $t = 0$	
			$v_{\rm P} = \sqrt{2gl}$	A1	1.1		
			$t=0$ $y=\sqrt{\frac{2gl}{2gl}} \rightarrow R=\sqrt{\frac{2gl}{2gl}}$	M1dep*	3.4	Use initial speed in an expression for \dot{x}	
			$t = 0, x = \sqrt{2gt} \Rightarrow B = \frac{\sqrt{2gt}}{\omega}$				
			$r = \frac{g}{\cos at} + \sqrt{\frac{2gt}{g}} \sin at + \frac{g}{g}$	A1	1.1	$\frac{1}{2}\left(1-\cos\alpha + 2\sqrt{\sin}\alpha\right)$	
			$x = -\frac{g}{\omega^2}\cos\omega t + \frac{\sqrt{2gl}}{\omega}\sin\omega t + \frac{g}{\omega^2}$			oe e.g. $x = \frac{l}{12} (1 - \cos \alpha t + 2\sqrt{\sin \alpha t})$ Sets $x = 0$ and replaces $\omega^2 = \frac{12g}{12}$	
			$\frac{1}{2}(1, \cos \alpha + 2\sqrt{\sin \alpha})$	M1	3.1b	Sets $x = 0$ and replaces $\omega^2 = \frac{12g}{1}$	Dependent on all
			$\frac{l}{12} \left(1 - \cos \omega t + 2 \overline{A} \sin \omega t \right) = 0$			l	previous M marks
			$\cos \omega t - \sqrt{24} \sin \omega t = 1$ so $k = 24$	A1	2.2a	k need not be stated explicitly	
				[10]			

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

