## Specification A: Paper 1 Higher Tier

| 1MA0/                  | ′1H         |                                     |                                                |      |                                                                                                                                                               |
|------------------------|-------------|-------------------------------------|------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quest                  | tion        | Working                             | Answer                                         | Mark | Additional Guidance                                                                                                                                           |
| 1.                     | (i)<br>(ii) | 6 - 12x - 3x - 3 = 0<br>3 - 15x = 0 | $\frac{30x - 10y}{\frac{1}{5}}$                | 5    | B2 cao<br>(If no marks then B1 $30x$ , B1 $10y$ )<br>M1 for correct multiplication of brackets to get $6 - 12x - 3x - 3$<br>A1 $3 - 15x = 0$                  |
|                        |             | 15x = 3                             |                                                |      | B1 ft for " $\frac{1}{5}$ "<br>Total for Question: 5 marks                                                                                                    |
|                        |             | 1                                   | Deathmenth                                     |      |                                                                                                                                                               |
| 2.<br>QWC<br>iii<br>FE |             | See table at end                    | Best month<br>and<br>supporting<br>explanation | 4    | M1 Converts for at least 2 months to a common format (fractions, decimals or %age)<br>A1 all correct                                                          |
|                        |             |                                     |                                                |      | C1 for Council target: No (yes) dep on M1 and consistent with the candidates calculations QWC: Decisions should be stated, following through from working out |
|                        |             |                                     |                                                |      | C1 March with all calculations correct for the 3 months QWC:<br>Decisions should be stated, following through from working out                                |
|                        |             |                                     |                                                |      | Total for Question: 4 marks                                                                                                                                   |

Edexcel GCSE in Mathematics A

| uestion  | Working                                                                                                                                                                                                                                                                                                  | Answer Ma     |                  | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.<br>'E | No of tiles around room<br>= 2 × lengths of room = 8, 16,<br>16, 12<br>Total number of tiles<br>= 8 × 16 + 8 × 12 = 224<br>Cost = 4 × 224<br>OR<br>Area of the room<br>=4 × 8 + 4 × 6 = 56<br>Area of a tile<br>= $0.5 \times 0.5 = 0.25$<br>Number of tiles = $56 \div 0.25$<br>= 224<br>Cost = 4 × 224 | £ 896         | 6                | M1 for doubling each length to show number of tiles for each side<br>B1 for 8, 16, 16 and 12<br>M1 for a full method of finding the number of tiles $(12 \times 16 + 8 \times 4)$<br>A1 for at least one 'section' correct<br>M1 for 4 × '224'<br>A1 cao<br><b>OR</b><br>M1 for full method for finding the area of the room<br>A1 at least one area correct<br>B1 for area of tile = $0.25m^2$ or $2500 \text{ cm}^2$ or 4 tiles = $1 \text{ m}^2$<br>M1 for area of room $\div$ area of a tile<br>M1 for 4 × number of tiles<br>A1 cao |
| <u>l</u> | <u> </u>                                                                                                                                                                                                                                                                                                 |               | <u> <u> </u></u> | Total for Question: 6 ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4. (a)   | 5 <i>p</i> = 20                                                                                                                                                                                                                                                                                          | <i>p</i> = 4  | 2                | M1 add 16 to both sides<br>A1 cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (b)      | -9 = 3q                                                                                                                                                                                                                                                                                                  | <i>q</i> = -3 | 2                | M1 correct method to isolate $\pm 3q$<br>A1 cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (c)      | 6x - 3 - 10 - 6x =                                                                                                                                                                                                                                                                                       | -13           | 2                | M1 at least one expansion correct<br>A1 $-13$ or a statement that the answer is indep of $x$ depending on<br>correct working                                                                                                                                                                                                                                                                                                                                                                                                             |

| Question | Working                                                                                                                                                                                                                | Answer                                            | Mark | Additional Guidance                                                                                                                                            |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. (i)   |                                                                                                                                                                                                                        | 32                                                | 1    | B1 cao                                                                                                                                                         |
| (ii)     | $2n^2 = 400, n^2 = 200, n$ not a whole number                                                                                                                                                                          | No +<br>explanation                               | 2    | M1 sets $2n^2 = 400$<br>C1 and concludes correctly<br><b>OR</b><br>M1 14th term is (392), 15th term is (450)<br>C1 and concludes correctly                     |
|          |                                                                                                                                                                                                                        |                                                   |      | Total for Question: 3 mar                                                                                                                                      |
| 6.<br>FE | 15400 ÷ 70 × 100 = 22000<br>22000 × 2÷ 100                                                                                                                                                                             | 440                                               | 4    | M1 15400 ÷ 70 × 100 oe<br>A1 22000<br>M1 '22000' × 2 ÷ 100 oe<br>A1 cao                                                                                        |
|          |                                                                                                                                                                                                                        |                                                   |      | Total for Question: 4 mar                                                                                                                                      |
| 7. (a)   | 66 = 2 ×33 = 2 × 3 × 11                                                                                                                                                                                                | 2 × 3 × 11                                        | 2    | M1 Successive division by 2 and 3 either by a factor tree or by repeate<br>division<br>A1 cao                                                                  |
| (b)      | $132^{2} = 4 \times 66^{2}$<br>= 2 <sup>2</sup> × (2 × 3 × 11) <sup>2</sup><br>OR<br>$132^{2} = 17424 = 2 × 8712$<br>= 2 × 2 × 4356 =<br>2 <sup>3</sup> × 2178 = 2 <sup>4</sup> × 1089<br>= 2 <sup>4</sup> × 3 × 363 = | 2 <sup>4</sup> × 3 <sup>2</sup> × 11 <sup>2</sup> | 2    | M1 $(2 \times 3 \times 11)^2$<br>A1 $2^2 \times 3^2 \times 11^2$ oe<br>OR<br>M1 $132^2 = 17424$<br>and at least 3 correct steps in for example the factor tree |

| 1MA0/1H  |                                                                                                                                                                                                                                    |                |      |                                                                                |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|--------------------------------------------------------------------------------|
| Question | Working                                                                                                                                                                                                                            | Answer         | Mark | Additional Guidance                                                            |
| 8.       | $x + 4x + \frac{1}{2} = 1$<br>$5x = \frac{1}{2}, x = \frac{1}{10}$<br>OR<br>Chooses a suitable number of<br>balls (say 10)<br>5 will be red<br>The other 5 need to be<br>shared out in the ratio 1:4,<br>Hence 1 yellow and 4 blue | $\frac{4}{10}$ | 3    | M1 $x + 4x + \frac{1}{2} = 1$<br>A1 $x = \frac{1}{10}$<br>A1 $\frac{4}{10}$ oe |
|          |                                                                                                                                                                                                                                    |                |      | Total for Question: 3 marks                                                    |

| Question   | Working                                | Answer           | Mark | Additional Guidance                                                                                           |
|------------|----------------------------------------|------------------|------|---------------------------------------------------------------------------------------------------------------|
| 9. (a) (i) |                                        | $a^2$            | 3    | B1 cao                                                                                                        |
| (ii)       |                                        | $6x^4y^3$        |      | B2 $6x^4y^3$<br>(B1 for 2 out of 3 terms correct in a product)                                                |
| (b)        | $x^2 + 3x + 7x + 21$                   | $x^2 + 10x + 21$ | 2    | M1 3 or 4 terms out of 4 correct in a 4 term expansion<br>A1 cao                                              |
| (C)        |                                        | 3p(q - 4p)       | 2    | B2 cao<br>(B1 $p(3q - 12p)$ , $12p(\frac{1}{4}q - p)$ , $p(aq + bp)$ where <i>a</i> and <i>b</i> are numbers) |
| (d)(i)     | (3(x+2)-1)(x+2-3)                      | (3y-1)(y-3)      | 4    | B2 cao<br>(B1 $(3y - m)(y - n)$ where $mn = \pm 3$ or $m + n = \pm 10$                                        |
| (ii)       | OR<br>$3x^2 + 12x + 12 - 10x - 20 + 3$ | (3x+5)(x-1)      |      | M1 use of the factorised form with $y$ replaced twice by $3x + 2$<br>A1 cao<br><b>OR</b>                      |
|            | $= 3x^2 + 2x - 5$                      |                  |      | B1 $3x^2 + 2x - 5$<br>B1 cao                                                                                  |

Edexcel GCSE in Mathematics A

| 1MA0/1H  |                                                                                                   |                     |      |                                                                                                                                                                                                                                         |
|----------|---------------------------------------------------------------------------------------------------|---------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question | Working                                                                                           | Answer              | Mark | Additional Guidance                                                                                                                                                                                                                     |
| 10.      | Reds 6, 12, 18, 24, 30<br>Greens 9, 18, 27                                                        | $\frac{1}{20}$      | 3    | B1 list of red and green multiples (both to at least 18) or explicitly<br>states 'LCM'<br>B1 works out highest number (90 seen)<br>B1 $\frac{1}{20}$ (accept $\frac{5}{100}$ )                                                          |
| •        |                                                                                                   |                     |      | Total for Question: 3 marks                                                                                                                                                                                                             |
| 11.      | $\frac{x}{5} = \frac{2}{4}$ $\frac{y}{x+5} = \frac{9}{6} \text{ or } \frac{y}{9} = \frac{x+5}{6}$ | x = 2.5<br>y =11.25 | 4    | M1 a correct expression for x involving ratios of sides, e.g. $\frac{x}{5} = \frac{2}{4}$ oe<br>A1 cao<br>M1 $\frac{y}{x+5} = \frac{9}{6}$ Or $\frac{y}{9} = \frac{x+5}{6}$ Oe<br>A1 cao<br>OR<br>$\frac{y}{5} = \frac{9}{4}$<br>A1 cao |
|          | 1                                                                                                 |                     | -    | Total for Question: 4 marks                                                                                                                                                                                                             |

| 1MA0/1H  |                                                                             |                |      |                                                                                                                                                                                                             |
|----------|-----------------------------------------------------------------------------|----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question | Working                                                                     | Answer         | Mark | Additional Guidance                                                                                                                                                                                         |
| 12. (a)  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                       | $\frac{4}{16}$ | 3    | M1 Attempts to list all outcome pairs<br>A1 all 16 found<br>A1 cao<br>OR<br>M2 $\frac{1}{4} \times \frac{1}{4} \times 4$<br>(M1 $\frac{1}{4} \times \frac{1}{4} \times 1$ , 2 or 3)<br>A1 $\frac{4}{16}$ oe |
| (b)      | Prob Ali wins = $\frac{6}{16}$<br>Number of wins = $\frac{6}{16} \times 80$ | 30             | 3    | B1 Prob Ali wins = $\frac{6}{16}$ oe<br>M1 $\frac{6}{16} \times 80$<br>A1 ft                                                                                                                                |
|          | 1                                                                           | <u> </u>       |      | Total for Question: 6 mar                                                                                                                                                                                   |

| Question |     | Working                                                       | Answer                | Mark | Additional Guidance                                                          |
|----------|-----|---------------------------------------------------------------|-----------------------|------|------------------------------------------------------------------------------|
| 13.      | (a) |                                                               | 3.4 × 10 <sup>7</sup> | 1    | B1 cao                                                                       |
|          | (b) | $2.4 \times 10^{12} \times \frac{5}{100}$ (÷10 <sup>6</sup> ) | $1.2 \times 10^{5}$   | 2    | M1 2.4 × 10 <sup>12</sup> × $\frac{5}{100}$ oe (÷10 <sup>6</sup> )<br>A1 cao |

| Question | Working                                                                                                                                        | Answer        | Mark | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14.      | Let $AB = x$ , $AD = y$<br>Area of rectangle = $xy$<br>Area $AXD = \frac{xy}{4}$<br>Area $CYZ = \frac{xy}{8}$<br>Shaded area = $\frac{5xy}{8}$ | <u>5</u><br>8 | 4    | M1 a full method to find the unshaded area and subtracting from 1<br>B1 area of $AXD$ = area of $ABCD \div 4$<br>B1 area of $CYZ$ = area of $ABCD \div 8$<br>A1 cao<br><b>OR</b><br><b>Diagram</b><br>M1 for dividing left into 2 congruent triangles<br>for dividing right into 4 congruent triangles<br>B1 left = $2A$ and $2A$ or<br>shaded = $\frac{1}{2}$ of $\frac{1}{2} = \frac{1}{4} = \frac{2}{8}$<br>B1 right = $2A$ and $A$ and $A$ or<br>shaded = $\frac{3}{4}$ of $\frac{1}{2} = \frac{3}{8}$<br>A1 cao<br><b>Substitution</b><br>M1 for deciding upon suitable side lengths for $AD$ and $AB$ and calculatin<br>dimensions of internal shapes<br>B1 for area of $DZX$<br>B1 for area of $ZXBY$<br>A1 cao<br><b>OR</b><br>M1 for deciding upon suitable side lengths for $AD$ and $AB$ and calculatin<br>dimensions of internal shapes<br>B1 for area $ADX$<br>B1 for area $ADX$<br>B1 for area $ZCY$<br>A1 cao |

| Question       | Working                                                                                                              | Answer                                        | Mark | Additional Guidance                                                                                 |  |
|----------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|-----------------------------------------------------------------------------------------------------|--|
| 15. (a)<br>(i) | $\vec{BC} = \vec{CO} + \vec{OB}$                                                                                     | 12a – 4b                                      | 4    | $\overrightarrow{BC} = \overrightarrow{CO} + \overrightarrow{OB}$ A1 cao                            |  |
| (ii)           | $\vec{AQ} = \vec{AO} + \vec{OB} + \vec{BQ}$ $= -4\mathbf{a} + 4\mathbf{b} + \frac{1}{4}(12\mathbf{a} - 4\mathbf{b})$ | 3b – a                                        |      | M1 -4a + 4b + $\frac{1}{4}$<br>'(12a - 4b)'<br>A1 cao                                               |  |
| (b)            | $\overrightarrow{OX}$ = 12b , $\overrightarrow{AX}$ =-4a + 12b<br>= 4(-a + 3b)                                       | Correct<br>reason, with<br>correct<br>working | 3    | B1 $\overrightarrow{OX}$ = 12b<br>B1 $\overrightarrow{AX}$ = -4a + 12b<br>C1 convincing explanation |  |

| IMA0/1H<br>Question | Working                                                                                                                                                                                            | Answer             | Mark | Additional Guidance                                                                                                                                                                                                                                                                                                                                             |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16.                 | $\frac{4}{10} \times \frac{6}{9} \times \frac{5}{8} = \frac{120}{720}$ $\frac{120}{720} + \frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} + \frac{6}{10} \times \frac{4}{9} \times \frac{5}{8}$ | <u>360</u><br>720  | 4    | M1 for $\frac{4}{10} \times \frac{6}{9} \times \frac{5}{8}$<br>A1 for $\frac{120}{720}$ oe<br>M1 $\frac{120'}{720}$ + 2 correct cases (M1 any 2 correct cases)<br>or $\frac{120'}{720}$ X 3<br>A1 cao<br>SC with replacement<br>M1 $\frac{4}{10} \times \frac{6}{10} \times \frac{6}{10}$<br>M1 $\frac{4}{10} \times \frac{6}{10} \times \frac{6}{10} \times 3$ |
| <u>_</u>            | -                                                                                                                                                                                                  | <u> </u>           |      | Total for Question: 4 mai                                                                                                                                                                                                                                                                                                                                       |
| 17.                 | $\frac{(3x+5)(x-7)}{(3x-5)(3x+5)}$                                                                                                                                                                 | $\frac{x-7}{3x-5}$ | 3    | B1 $(3x+5)(x-7)$<br>B1 $(3x-5)(3x+5)$                                                                                                                                                                                                                                                                                                                           |
|                     |                                                                                                                                                                                                    |                    |      | B1 $\frac{x-7}{3x-5}$<br>Total for Question: 3 mar                                                                                                                                                                                                                                                                                                              |

Edexcel GCSE in Mathematics A

| Quest    | tion | Working                                                                      | Answer          | Mark | Additional Guidance                                                                                                                                                                                                                                                       |
|----------|------|------------------------------------------------------------------------------|-----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18.      | (a)  |                                                                              | $\frac{1}{2}$   | 1    | B1                                                                                                                                                                                                                                                                        |
|          | (b)  | $(2 + \sqrt{3}) \times (1 + \sqrt{3}) = 2 + 2\sqrt{3} + \sqrt{3} + \sqrt{9}$ | $5+3\sqrt{3}$   | 2    | M1 4 term expansion with 3, 4 terms correct and sight of 3 or $\sqrt{9}$ A1 cao                                                                                                                                                                                           |
| <u>l</u> |      |                                                                              | <u>l</u>        |      | Total for Question: 3 mark                                                                                                                                                                                                                                                |
| 19.      | (a)  |                                                                              | Smooth<br>curve | 2    | B1 correct plot of their values<br>B1 smooth curve through their points                                                                                                                                                                                                   |
|          | (b)  |                                                                              | x = 3<br>y = 0  | 3    | M1 attempts to draw circle at origin<br>M1 uses radius 3 cm (using graph scale correctly)<br>A1 cao<br>OR<br>B1 for substituting a value of x into $y = x(x - 3)$ and $x^2 + y = r^2$<br>B1 for substituting y into $x = 3$ into $x(x - 3)$ and $x^2 + y = r^2$<br>B1 cao |

| Question              | Working                                                                                                                                                        | Answer                                                                               | Mark | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20.<br>QWC<br>ii, iii | $(2n+1)^{2} - (2n-1)^{2}$ $=$ $4n^{2} + 4n + 1 - (4n^{2} - 4n + 1)$ $= 8n$ OR $(2n+1)^{2} - (2n-1)^{2} =$ $((2n+1) - (2n-1))(2n+1+2n-1))$ $= 2 \times 4n = 8n$ | Fully<br>algebraic<br>argument,<br>set out in a<br>logical and<br>coherent<br>manner | 6    | B2 the <i>n</i> th term for consecutive odd numbers is $2n - 1$ oe<br>(B1 $2n + k$ , $k \neq -1$ or $n = 2n - 1$ or $2x - 1$<br>B1 use of $2n + 1$ and $2n - 1$ oe<br>M1 $(2n + 1)^2 - (2n - 1)^2$<br>M1 $4n^2 + 4n + 1 - (4n^2 - 4n + 1)$<br>C1 conclusion based on correct algebra QWC: Conclusion should be<br>stated, with correct supporting algebra.<br>OR<br>B1 use of $2n + 1$ and $2n - 1$ oe<br>M1 $(2n + 1)^2 - (2n - 1)^2$<br>M1 $((2n + 1)^2 - (2n - 1))(2n + 1 + 2n - 1))$<br>C1 conclusion based on correct algebra QWC: Conclusion should be<br>stated, with correct supporting algebra. |

| 1MA0/1H  |                                             |                                |                                 |                               |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|---------------------------------------------|--------------------------------|---------------------------------|-------------------------------|--------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question | Working                                     |                                |                                 | Answer                        | Mark                                                         | Additional Guidance |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21.      | L<br>0-10<br>10-20<br>20-40<br>40-80<br>>80 | F<br>40<br>60<br>90<br>60<br>0 | FD<br>4<br>6<br>4.5<br>1.5<br>0 | CF<br>40<br>100<br>250<br>250 | Histogram<br>OR<br>Cumulative<br>Frequency<br>polygon<br>82% | 6                   | B1 Scales labelled and also marked on the vertical axis with frequency<br>density or with cumulative frequency<br>M1 frequency densities calculated, at least one non-trivial one correct.<br>A1 all correctly plotted<br>(M1 cumulative frequencies correct)<br>M1 Use 50 on the horizontal scale of CF diagram read off vertical axis<br>(200-210)<br>or Use 50 on the horizontal scale of a histogram and covert area to the<br>left to a frequency<br>M1 convert to a percentage<br>A1 80 – 85 |
|          |                                             |                                |                                 |                               |                                                              |                     | Total for Question: 6 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|     | Fraction       | Decimal | %     | kg        |
|-----|----------------|---------|-------|-----------|
| Jan |                |         |       |           |
|     | $\frac{1}{10}$ | 0.1     | 10%   | Not known |
| Feb |                |         |       |           |
|     | 1              | 0.125   | 12.5% | 15 kg     |
|     | 8              |         |       |           |
| Mar |                |         |       |           |
|     | 13             | 0.13    | 13%   | 14.56 kg  |
|     | 100            |         |       |           |



Edexcel GCSE in Mathematics A 2.





© Edexcel Limited 2010

Edexcel GCSE in Mathematics A

90

Sample Assessment Materials Issue 2