G492 – Understanding Processes, Experimentation and Data Handling

Qn	Expected Answers	Marks	Additional guidance
	(a) hf and $\frac{1}{2}mv^2$ (1)	1	Both needed (either order) in each part.
1	(b) $d \sin \theta$ and $\frac{1}{2}at^2$ (1)	1	
2	¹ / ₄ λ (1)	1	Allow ringing, underlining, etc. of $\frac{1}{4}\lambda$ in list
3	v = $\sqrt{(200^2 - 50^2)}$ = 190 m s ⁻¹ (1); θ = arcsin(50/200) (1); = arcsin (0.25) = 14.47° = 14° (1)	3	Ignore any vector triangle with θ to the east instead of west. Allow resultant = 200 km h ⁻¹ or assuming v = hypotenuse = 206 km h ⁻¹ Allow θ = arctan(50/200)= 14.0° in either case Alternatives: 193.6 km h ⁻¹ & 14.5°, 200 km h ⁻¹ & 14.0°, 206 km h ⁻¹ & 14.0° For scale drawing allow greater tolerance.
4	$\mathbf{X} = \frac{1}{2}at^2 (3^{rd} box)$ $\mathbf{Y} = ut (4^{th} box)$	2	One for each correct tick. If more than one choice for X or for Y, ignore that area.
5	$\lambda /d = \sin \theta \approx x/L$ (1) $d = \lambda L/x = 590 \times 10^{-9} \text{ m} \times 1.2 \text{ m}/3.5 \times 10^{-3} \text{ m}$ (1) $= 2.0 \times 10^{-4} \text{ m}$ (1)	3	Or quote $\lambda = xd/L$, etc. Rearrange/substitute. Must be correct from first stage (no ecf). θ =0.17°. Eval.: allow 0.20 mm
6	(a) $f = E/h = 3.5 \times 10^{-19} \text{ J/6.6} \times 10^{-34} \text{ J s (1)}$ = 5.3 × 10 ¹⁴ Hz (1) (b) P = NE/t = 1.2 × 10 ¹⁷ × 3.5 × 10 ⁻¹⁹ J / 1 s = 0.042 W (1)m (1)e	2 2	Method/substitution Evaluation
7	(a) $E = mgh = 6.0 \times 10^{-3} \text{ kg} \times 9.8 \text{ m s}^{-2} \times 0.50 \text{ m} (1)$ = 0.029 J (1) (b) displacement $x = (30 - 9) \times 10^{-3} \text{ m} = 0.021 \text{ m} (1)$ $W = Fx = 3 \text{ N} \times 0.021 \text{ m} (1)$	2	Method/substitution Evaluation Can be incorporated into calc. of <i>W</i>
	= 0.063 J (1)	3	Evaluation. Penalise 1 mark for use of mm instead of m.
	Section A total:	20	

G492

Qn	Expected Answers	Marks	Additional guidance
8 (a)	 (i) between 0.1 and 0.3 s (1) (ii) demonstrating that either area under graph or (average speed × time) (1); is considerably less than 200m / ≈ 100 m (1) 	2	Must use data from both axes. method mark for getting a typical/average speed & time and multiplying, or indicating that total area = distance and indicating area (1); evaluation mark for comparison with 100 m (1) (final speed × time) gets only (1) unless qualified e.g. final speed is about the average.
(b)	(i) $a = 4 \text{ m s}^{-1}/(0.7 \text{ s} - 0.2 \text{ s}) = 8 \text{ m s}^{-2} (1)\text{m}; (1)\text{e};$ $F = ma = 88 \times 8 = 704 \text{ N} \approx 700 \text{ N} (1)$ (ii) assumes no resistive forces/reference to lack of precision in data from graph (1)	3	Method is gradient of straight line: must have $\Delta v > 1 \text{ m s}^{-1}$ and allow for reaction time (1); Evaluation ± 2 m s ⁻² (1) ecf for <i>a</i> ; may see answers (with correct <i>a</i>) from 530-880 N
(C)	Drop in speed noticeable in last $1.2 - 1.7$ s / after 8s (1); Mean speed over this time is $11.5 - 11.8$ m s ⁻¹ (1); Combining above & comparing with 20 m.(1)	3	First two points and combination can be done by area: needs comparison with 20 m for 3 rd mark. Third mark is the QWC 'organise information clearly' mark.
	Total:	10	
9 (a)	(i) F (1)	1	
(b)	(II) A and B (1) First out from the centre (on each side) = A (1); Outermost (on each side) = F (1)	1 2	Both needed
(C)	(i) $f = c/\lambda = c = 3.0 \times 10^8 \text{ m s}^{-1}/360 \times 10^{-9} \text{ m}$ = 8.3 × 10 ¹⁴ Hz (1)m; (1)e $E = hf = 6.6 \times 10^{-34} \text{ J s} \times 8.3 \times 10^{14} \text{ Hz}$ = 5.5 × 10 ⁻¹⁹ J (1) (ii) Comparing electron energy from table (0.82 × 10 ⁻¹⁹)	3	Allow ecf. "Show that" so needs 2 sf. Give all 3 marks for $E=h c/\lambda$ & eval. photon energy e.c.f. from (i)
	J) with photon energy (5.5 × 10^{-19} J) (1); Difference ~ 4.7 × 10^{-19} L (1)	2	Can calculate photon energy for 435 nm for both marks
	- Total	0	Can calculate photon energy for 400 mm for both marks.
	Iotai:	3	

G492

Qn	Expected Answers	Marks	Additional guidance
10 (a)	(i) wave reflects (at open end) (1); resonance idea		Allow pressure N & A if clear.
	e.g. sets up right frequency (1); there is <u>superposition</u>		Any three points. Incorrect spelling of underlined terms means max
	/ <u>interference</u> between waves (in opposite directions)	3	2. Allow paraphrases for the marking point.
	 (1); nodes = destructive interference/out of phase (1); 		
	antinodes = constructive interference/in phase (1)		
	QWC is 'spelling, punctuation and grammar' of		
	reflection and interference or superposition		
	(ii) length of didgeridoo = $\frac{1}{4} \lambda$ so λ = 6.4 m (1);	3	m & e; ecf for λ
	$f = c/\lambda = 340 \text{ m s}^{-1}/6.4 \text{ m} = 53 \text{ Hz} (2)$		
	(iii) A at open end and N at 'mouth' end (1); A and N		
	alternate and equally spaced (1); pattern A N A N (1)	3	
(b)	Test: <u>constant</u> <i>f</i> : <i>T</i> /straight line graph through origin (1)		If test for linearity proposed and done correctly (equal differences,
	<i>f</i> . <i>T</i> = 4.93, 3.01, 2.19 (1)		so looks linear) give 1 mark. {for ref: <i>T:f</i> = 0.203, 0.332, 0.457}
	conclusion: not proportional. (1)	3	
	Total:	12	
11(a)	$5 \text{ m s}^{-1} \times 0.2 \text{ s} = 1.0 \text{ m} (1);$	_	
	Horizontal motion not affected by gravity/ <i>F</i> _{resultant} =0	2	Allow 'no horizontal acceleration'
	(1)		
(b)	(i) Straight line segments (1);		Second mark requires recognition that $x \propto t$ so straight line is
	$x \propto t$ so velocity = gradient = constant / acceleration	•	constant velocity as <i>y</i> - <i>x</i> graph is same shape as <i>y</i> - <i>t</i> graph.
	would produce curve (1)	2	
	(ii) $x \approx 3.5$ m (at $y \approx 0$) (1); $t = x/v_x \approx 3.5$ m/5 m s ⁻¹ =0.7		
	s (1)/ there are 4 line segments (1); each segment		
	is 0.2 s (so total is 0.8 s) (1)	2	
	(iii) $s = \frac{1}{2}at^2 \Rightarrow t = \sqrt{(2s/g)} = \sqrt{(2 \times 1.6 \text{ m}/ 9.8 \text{ m s}^2)}$		
	= 0.57 s (< 0.7 s) (1)m; (1)e	2	
	(iv) Velocity at start of each interval used / velocity		
	changes constantly/ time interval too big (1);	1	
(C)	Use smaller time intervals / more steps per second (1)		Or include acceleration during time intervals in the model (1)
	so v updated more often / true v modelled better (1)	2	so true <i>v</i> modelled better (1)
	Total:	11	
	Section B total:	42	

Qn	Expected Answers	Marks	Additional guidance
12 (a)	(i) 5000 Ω (1)	1	
	(ii) 5000 Ω (1)	1	
	(iii) 50 000 Ω (1)	1	
(b)	$\Delta V = (4.0 - 2.6) V = 1.4 V (1);$	4	Values 20°C, 4 V and 2.6 V imply use of graph.
	Sensitivity = $\Delta V / \Delta T$ = 1.4 V / 20 °C = 0.070 (1)m; (1)e		0.01 V ÷ gradient of line is valid: ΔV mark from triangle.
	With units V °C ⁻¹ (1)		If 'insensitivity' in °C V ⁻¹ calculated, maximum 3/4 if completely
			correct.
(C)	Identifies voltage range is $2.4 - 2.6$ V to 3.0 V i.e. 0.4		Look for gradient 0.4 to 0.6 V °C°. Can use values at 50°C and
	-0.6 V (1) Dividing this by 0.01 V gives 40 -60 stops in range (1)	2	60°C.
	Dividing this by 0.01 v gives $40 - 60$ steps in range (1) Temp, resolution = 10° C //40 to 60 = 0.25 to 0.17°C	3	Compares with ± 0.01 / Ecf from first step for factor
	(1) $(-1000) - 1000 + (-1000) - 0.2000 + 1700 + (-1000) - 0.2000 + 1700 + (-1000) + ($		Translates to °C. Ecf of factor from second step
	Total:	10	
12 (2)	(i) $P = 1/0.21 \text{ m} = 1/0.11 \text{ m} = 4.76 \text{ D} = 0.00 \text{ D} = 1/0.11 \text{ m} = 4.76 \text{ D} = 0.00 \text{ D} = 1/0.01 \text{ m} = 1.00 \text{ m} = $	10	
13 (a)	(1) $P = 1/0.21$ m - 1/0.11 m = 4.76 D - 9.09 D = - 4.3(3) D	l	
	4.5(5) D	1	Accept any clear recognition of 2 s f /2 d n implying $\pm \frac{1}{6}$ of last digit
	(ii) measured to nearest 0.01 m (so ± 0.005 m) (1)	•	Accept any clear recognition of 2 3.1.72 d.p. iniplying \pm 72 of last digit.
			If v_{max} and u_{max} (& mins) used in same calc. get P ₁ = -4.65 D and
	(iii) <i>P</i> ₁ = 1/0.215 m – 1/0.105 m = -4.87 D (1)		$P_2 = -4.04$ D; in this case give 1/2 for both calculations together.
	$P_2 = 1/0.205 \text{ m} - 1/0.115 \text{ m} = -3.82 \text{ D}(1)$		Ecf from P ₁ & P ₂ for 3 rd mark (above gives 0.61/2 = 0.3 D)
	Range = 1.05 D so uncertainty = 0.525 D (1);	4	1 s.f. for 4 th mark (even if answer wrong); 0.525 D or 0.53 D gets 3/4
	=0.5 D (1)		total
			If one extreme and mean used, completely correct answer would get
(b)			
(a)	(I) 9.1 4.8 Appotation: put Y op		One mark for each correct column
	8.3 4.2 Annotation. put x on	2	One mark for each context column $0.33 + 4.17$
	7.7 3.4	2	Allow 3 S.I. but hot 4 of hiore, 3 S.I. 7 7.08 3.43
	(ii) All correct (2); one wrongly plotted (1)	2	Overlay to be used. Ecf from (i) if needed.
	(iii) hest-fit line (1):	2	By eye: must have points both sides of line.
	$P = -1/\mu$ when $\nu = 0$	<u> </u>	Ecf: allow any method using line on graph, e.g. subst. values of
	= -4.4 to -4.5 D (1)		1/u,1/v from line
	Total:	12	

G492

Qn	Expected Answers	Marks	Additional guidance
14	(i) 13 900 km/ 902 km h ⁻¹ = 15.4 h (≈ 15 h) (1)	1	ora
(a)	(ii) fuel used = 15.4 h × 9800 L h ⁻¹ = 151 000 L (1) 80% of 195 600 = 156 000 L (1) > 151 000 L (1)	2	15.4 h = 77%; 15h = 75%
	(iii) Plausible suggestion (1); Explains effect of suggestion on fuel needed – must have correct physics reasoning (1)	2	e.g. head winds / diversion from route / delays in landing (1); so plane must stay longer in the air (1) or more fuel needed at take-off (1); work done in accelerating/overcoming turbulence/denser air at ground level (1)
(b)	(i) F = 3 × 270 000 = 810 000 N (1) a = F/m = 810 000 N/273 900 kg = 2.96 m s ⁻² (1)	2	Calc. of <i>a</i> from wrong <i>F</i> can gain 1 mark.
	(ii) <i>s</i> = <i>v</i> ² /2 <i>a</i> = (81 m s ⁻¹) ² /2×2.96 m s ⁻² = 1100 m (1)m; (1)e	2	Calc. of <i>s</i> from wrong <i>v</i> can gain 1 mark.
	 (iii) Plausible suggestion (1); Explains effect of suggestion on take-off distance – must have correct physics reasoning (1) 	2	e.g. May not reach required <i>v</i> due to wind / other traffic on runway / turbulence (1) If <i>v</i> not reached, plane would crash /need space to slow down to a halt(1)
(C)	Lift must equal weight (1); weight = $mg \underline{so}$ Lift $\propto m$ (1)	2	
(d)	Best-fit line excluding Boeing 777 point (1);		Line should obviously exclude Boeing 777 and should be reasonable best fit of other points by eye, i.e. have points on each side
	Identifying Boeing 777 as different from the others (1); suggestion for odd position of Boeing 777 (1)	3	Any two of these explanations/descriptions. Can credit use of other data related to Boeing 777 e.g. fuel capacity.
	Total:	16	
	Section C total:	40	