Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE in Chemistry (9CH0) Paper 1 Advanced Inorganic and Physical Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 9CHO_01_MS_1706
All the material in this publication is copyright
© Pearson Education Ltd 2017

General marking guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the mark scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
$\mathbf{1 (a)}$	The only correct answer is B	(1)
	\boldsymbol{A} is not correct because incorrect electrons	
\boldsymbol{C} is not correct because incorrect protons, neutrons and electrons		
\boldsymbol{D} is not correct because incorrect protons and neutrons		

Question Number	Answer	Additional Guidance	Mark
1(b)(i)	An explanation that makes reference to the following points: - (pyramidal / this shape) because there are 4 pairs / 3 bond pairs and one lone pair of electrons (around central / P atom) and these are arranged to minimise repulsion - (bond angle less than 109.5°) as lone pairbond pair repulsion is greater than bond pair-bond pair repulsion	'ions' scores (0) overall Allow the electron pairs are arranged to minimise repulsion Allow (4) pairs of electrons with maximum separation / as far apart as possible Ignore reference to 'bonds' Ignore wrong shape Ignore repel equally Ignore repulsion between electrons There must be a comparison in M2 Allow lone pairs have greater repulsion than bond pairs Ignore just 'the lone pairs repel more' Ignore repetition of the question e.g. 'reduces the bond angle' Ignore incorrect bond angle stated (Data book value is 100.1°) Do not allow bond angle $>109.5^{\circ}$	(2)

Question Number	Answer	Mark
$\mathbf{1 (b) (i i)}$	The only correct answer is D	(1)
	\boldsymbol{A} is not correct because both incorrect	
\boldsymbol{B} is not correct because non-polar bond is incorrect		
\boldsymbol{C} is not correct because non-polar molecule is incorrect		

Question Number	Answer	Additional Guidance	Mark
2(a)	An explanation that makes reference to the following points: - N changes from (+)5 to (+)4 - O changes from -2 to 0 (in O_{2}) - so nitrogen / N is reduced (as the oxidation number has decreased) and oxygen / O (in forming O_{2}) is oxidised (as the oxidation number has increased)	These numbers may be written under the formulae in the equation Allow oxidation numbers written as 5+, 4+, 2- Ignore unchanged oxidation numbers of magnesium and oxygen Allow this mark if incorrect / missing oxidation numbers in M1 and M2 Ignore general statement about redox Ignore redox explained in terms of electron gain or loss	(3)

Question Number	Answer	Additional Guidance	Mark
2(b)	An explanation that makes reference to the following points: - Size calcium ion / Ca^{2+} has larger (ionic) radius / is larger than magnesium ion or magnesium ion / Mg^{2+} has smaller (ionic) radius / is smaller than calcium ion - Polarising power so calcium ion/ Ca^{2+} causes less polarisation/ distortion or magnesium ion/ Mg^{2+} causes more polarisation/ distortion - What is polarised of the nitrate (ion / electron cloud) / $\mathrm{NO}_{3}{ }^{-} /$anion / negative ion / $\mathrm{N}-\mathrm{O}$ bonds / $\mathrm{N}=\mathrm{O}$ bonds / NO bonds	Penalise omission of 'ion' or just 'calcium / Ca / magnesium / Mg^{\prime} without charge, or reference to atom or molecule once only Ignore general references to ionic / covalent character Allow ionic radius increases down the group / decreases up the group Allow magnesium ions have a higher charge density (than calcium ions) Ignore atomic radius Ignore effective nuclear charge Allow the cation causes less / more polarisation if it is clear from M1 which cation is involved Do not allow this mark for carbonate / C-O bonds Do not allow mention of bond between cation and anion Note Nitrate ions are less polarised by Ca^{2+} / more polarised by Mg^{2+} scores M2 and M3	(3)

(Total for Question 2 = 6 marks)

Question Number	Answer	Additional Guidance	Mark
3(a)	An explanation that makes reference to the following points: - from chlorine to iodine / down the group, the number of electrons (in the molecule / atom) increases / changes from 34 to 106 / 17 to 53 - so the strength of the London / instantaneous dipole-(induced) dipole forces increases / there are more London / instantaneous dipole-(induced) dipole forces and more energy is needed to separate the molecules	An answer that states 'covalent bonds break' or 'bonds between atoms break' or refers to 'ions' scores (0) overall Allow reverse argument for M1 and M2 Allow iodine has more / most electron shells (than chlorine and/or bromine) Ignore 'the size of the atoms /molecules increases from chlorine to iodine' Do not allow incorrect numbers of electrons Allow iodine has the strongest London force and most energy is needed to separate the molecules Allow more energy is need to overcome / break the London forces / bonds instead of separate the molecules Allow dispersion forces / van der Waals forces for London forces Ignore higher temperature needed to separate the molecules Do not award dipole-dipole forces / just 'intermolecular forces'	(2)

Question Number	Answer	Additional Guidance	Mark
3(b)	An explanation that makes reference to the following points: - iodide ions are the strongest reducing agent because iodide ions / $\mathrm{I}^{-} /$(potassium) iodide reduces sulfur (in sulfuric acid) from +6 to 0 in sulfur / -2 in $\mathrm{H}_{2} \mathrm{~S}$ - (whereas) bromide ions $/ \mathrm{Br}^{-} /$(potassium) bromide reduces sulfur (in sulfuric acid) from +6 to +4 - (whereas) chloride ions / $\mathrm{Cl}^{-} /$(potassium) chloride do not reduce sulfuric acid / sulfur / S (as there is no change in oxidation number of Cl or S)	Allow the oxidation numbers written by the species in the table $(+) 6$ only needs to be mentioned once in M1 or M2 Allow references to potassium halides / halogens / hydrogen halides instead of halide ions For full marks, the answer must identify iodide as the strongest reducing agent Only 1 oxidation number change is needed. If both are given, both must be correct Allow bromide ions are stronger reducing agents than chloride ions because they are oxidised from -1 to 0 Allow just 'it is not a redox reaction'	(3)

Question Number	Answer	Mark
$\mathbf{3 (c) (\mathbf { i })}$	The only correct answer is \mathbf{A}	(1)
	\boldsymbol{B} is not correct because Cl^{-}is not an oxidising agent	
\boldsymbol{C} is not correct because I_{2} is not a powerful enough oxidising agent		
\boldsymbol{D} is not correct because Mn^{2+} is not an oxidising agent		

Question Number	Answer	Additional Guidance	Mark
3(c)(ii)	- all species on correct sides of equation and no electrons / electrons cancelled - balancing correct species - E^{\ominus} cell value	Example of ionic equation $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 \mathrm{Br}^{-}$ $\rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Br}_{2}$ Allow \rightleftharpoons Allow correct species if shown in working with half-equations but slip made in final equation e.g. charge missing Ignore state symbols Allow multiples Allow M2 for almost correct species $E_{\text {cell }}^{\ominus}(=1.51-1.09)=(+) 0.42(\mathrm{~V})$ No TE on incorrect equation	(3)

Question Number	Answer	Mark
$\mathbf{4 (a)}$	The only correct answer is B	(1)
	\boldsymbol{A} is not correct because 4 of the 3d electrons should be unpaired	
\boldsymbol{C} is not correct because there should not be any electrons in the 4s orbital		
\boldsymbol{D} is not correct because there should not be any electrons in the 4s orbital		

Question Number	Answer	Additional Guidance	Mark
4(b)	An explanation that makes reference to the following points: - (zinc (ions) / Zn^{2+}) has / have a full (3)d sub-shell / 3d ${ }^{10}$ / all (3)d orbitals are full - so d-d transitions cannot take place or electrons cannot move between (3)d orbitals or electrons cannot be promoted / excited to higher (3)d orbitals	Allow zinc (ions) / Zn^{2+} do not have a partially filled / incomplete (3)d (sub-) shell / no empty (3)d orbitals Do not allow zinc atoms Ignore omission of ' d ' in the 'or's, if it is included in M1 Do not allow the (3)d orbitals do not split / the (3)d subshell does not split Ignore just 'movement to different energy level'	(2)

Question Number	Answer	Additional Guidance	Mark
4(c)(i)	- 2 water ligands joined between O and Fe - 2 ethanedioate ligands drawn correctly showing all the bonds and joined between single-bonded O atoms and Fe as shown	Example of structure	(2)
		Allow water ligands arranged as cis or trans	
		Allow water ligands arranged as cis or trans Allow delocalised bonds in ethanedioate ions	
		Allow bonds not shown in $\mathrm{H}_{2} \mathrm{O}$, provided the ligands are attached to Fe^{2+} through oxygen atoms	
		Ignore bond lengths and angles	
		Ignore wedges and dotted lines to show shape	
		Ignore missing square brackets and charge / incorrect charge	
		Ignore -ve charges on ethanedioate ions / +ve charge on Fe	

Question Number	Answer	Additional Guidance	Mark
4(c)(ii)	An explanation that makes reference to the following points: - (there are) more particles / moles / species on the right of the equation (than on the left) or (there is an increase from) 3 particles on the left of the equation to 5 on the right - so $\Delta S_{\text {system }}$ increases / is positive (and $\Delta S_{\text {surroundings }}$ is unchanged so $\Delta S_{\text {total }}$ increases)	Do not allow incorrect numbers of particles Do not allow 3 molecules on the left and 5 molecules on the right Allow $\Delta S_{\text {total }}$ is positive / increasing Allow entropy / ΔS increases Allow there is a positive entropy change Ignore just there is an increase in disorder (from left to right) Ignore $\Delta S_{\text {surroundings }}$ changes Ignore just 'entropy is positive' Ignore references to free energy	(2)

Question Number	Answer	Additional Guidance	Mark
4(d)	- Fe^{2+} oxidised to Fe^{3+} in reaction with $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ - Fe^{3+} reduced to Fe^{2+} in reaction with I^{-}	Examples of equations $\begin{equation*} 2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}^{2-} \tag{1} \end{equation*}$ $\begin{equation*} 2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2} \tag{1} \end{equation*}$ Ignore state symbols Allow equations in either order Allow multiples Penalise uncancelled electrons once only Note If no other mark is awarded, allow (1) for all correct species in 2 unbalanced equations	(2)

Question Number	Answer	Mark
$\mathbf{5 (a)}$	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because standard enthalpy of formation is for making 1 moles of a compound	
	\boldsymbol{B} is not correct because standard enthalpy of formation is for making 1 moles of a compound	
\boldsymbol{D} is not correct because oxygen must be O_{2}		

Question Number	Answer	Additional Guidance	Mark
5(b)	- calculation of energy needed to break bonds - calculation of energy released when bonds are made - calculation of mean bond enthalpy of $\mathrm{C}-\mathrm{O}$ (1)	Example of calculation Energy to break bonds: $(\mathrm{C}-\mathrm{C})+(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})$ $\begin{align*} & =347+413+(\mathrm{C}-\mathrm{O}) \tag{1}\\ & =(\mathrm{C}-\mathrm{O})+760(\mathrm{~kJ}) \end{align*}$ Energy released in forming bonds: $(\mathrm{C}=\mathrm{C})+(\mathrm{O}-\mathrm{H})$ $=612+464=(-) 1076(\mathrm{~kJ})$ $(C-0)+760-1076=42$ $(\mathrm{C}-\mathrm{O})=(+) 358\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ TE on M1 and M2 If all bonds broken: Energy to break bonds $=(\mathrm{C}-\mathrm{O})+4049(\mathrm{~kJ})$ Energy released in forming bonds $=(-) 4365(\mathrm{~kJ})$ Ignore units Correct answer with no working scores (3) Allow correct working in M1 and M2 if answers not evaluated	(3)

Question Number	Answer	Mark
$\mathbf{5 (c)}$	The only correct answer is A	(1)
	B is not correct because all increase in entropy as disorder increases when gases are formed	
	\boldsymbol{C} is not correct because all increase in entropy as disorder increases when gases are formed	
\boldsymbol{D} is not correct because all increase in entropy as disorder increases when gases are formed		

Question Number	Answer	Mark
$\mathbf{5 (d)}$	The only correct answer is \mathbf{D}	(1)
	\boldsymbol{A} is not correct because $\Delta S_{\text {surroundings is incorrect }}$	
	\boldsymbol{B} is not correct because $\Delta S_{\text {surroundings }}$ is incorrect	
\boldsymbol{C} is not correct because sign of $\Delta H / T$ is incorrect		

Question Number	Answer	Additional Guidance	Mark
5(e)	- calculation of ΔG - ΔG is positive / >0 so reaction is not feasible - calculation of T (1)	Penalise incorrect units in M1 or M3 once only Working is not required for the calculations Example of calculation $\overline{\Delta G=178-\left(298 \times \frac{165}{1000}\right)}$ $=(+) 128.83 / 129\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ or $\begin{aligned} & \Delta G=178000-(298 \times 165) \\ & =(+) 128830 / 129000\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \end{aligned}$ Stand alone mark Allow ΔG must be negative for a reaction to be feasible Ignore 'so reaction is not feasible' without a reason No TE on a calculated negative value Example of calculation $\Delta G=0, \text { so } \Delta H=T \Delta S_{(\mathrm{sys})} \text { or } T=\Delta H / \Delta S_{(\mathrm{sys})}$ or $\Delta S_{\text {total }}=\Delta S_{\text {sys }}-\Delta H / T=0 \text {, so } T=\Delta H / \Delta S_{(\text {sys })}$ $T=178 / 0.165=1078.8 / 1079 / 1080(\mathrm{~K})$ or $T=178000 / 165=1078.8 / 1079 / 1080(\mathrm{~K})$ or $T=806\left({ }^{\circ} \mathrm{C}\right)$ Ignore SF except 1 SF	(3)

Question Number	Answer	Additional Guidance	Mark
6(a)(i)	- dot-and-cross diagram and charges	Example of diagram	(1)
		Circles are not needed	
		Allow no electrons or 8 electrons on outer shell of Mg	
		Allow dots or crosses for all electrons	
		Allow diagrams without square brackets, provided charges are shown	
		Allow alternative ways of showing that there are 2 bromide ions	
		Ignore inner shell electrons	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (a) (\text { ii) }}$	(conducts electricity when) molten / liquid and dissolved in water / (in) aqueous (solution)	Both needed for the mark	(1)

Question Number	Answer	Additional Guidance	Mark
6(b)(ii)	- correct expression for $2 \times \mathrm{EA}(\mathrm{Br})$ in numbers or symbols (1) - calculation of $\mathrm{EA}(\mathrm{Br})$	Example of calculation $\begin{aligned} & 2 \times \mathrm{EA}(\mathrm{Br})=-(2 \times+112)-(+1451)-(+738) \\ & -(+148)+(-524)-(-2440) \end{aligned}$ $\mathrm{EA}(\mathrm{Br})=\frac{-645}{2}=-322.5 /-323\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Correct answer with no working scores (2) Allow for 1 mark: (+)322.5 / (+)323 (wrong sign) -266.5 /-267 (2 missing from $\Delta_{\mathrm{at}} H(\mathrm{Br})$) -645 (2 missing from EA) -533 (both 2s missing for Br) Ignore units No TE on incorrect arrows in (b)(i)	(2)

Question Number	Answer	Additional Guidance	Mark
6(c)(i)	An explanation that makes reference to the following points: - Nuclear charge magnesium (atom) / Mg has more protons than sodium (atom) / Na or magnesium / Mg has a greater (effective) nuclear charge (than sodium / Na) - Shielding (outer) electron in magnesium (atom) / Mg in the same (quantum) shell / energy level / sub-shell / orbital as in a sodium atom / Na or shielding in magnesium atom / Mg similar to / same as that in sodium atom / Na - Attraction so the force of attraction between the nucleus and the (outer) electron is greater in magnesium (atom) / Mg (than in sodium atom / Na)	Penalise reference to ion once only Ignore reference to atomic radius Allow correct E.C of both atoms Allow same number of (quantum) shells / energy levels in Mg and Na Allow the (outer) electron in Mg is held more tightly to the nucleus (than in Na) Note An answer that describes the trend across a period, without one reference to either sodium or magnesium, scores maximum (2) marks	(3)

Question Number	Answer	Additional Guidance	Mark
6(c)(ii)	- correct equation with state symbols	Examples of equations $\begin{aligned} & \mathrm{Mg}^{2+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{3+}(\mathrm{g})+\mathrm{e}^{(-)} \\ & \mathrm{Mg}^{2+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Mg}^{3+}(\mathrm{g}) \end{aligned}$ Ignore state symbol for the electron Do not allow \rightleftharpoons	(1)

(Total for Question 6 = 11 marks)

Question Number	Answer	Additional Guidance	Mark
7(a)	- calculation of moles used - calculation of energy for that number of moles - calculation of temperature change and gives answer to 2 SF (because a school thermometer cannot measure to 3 SF)	Example of calculation moles used $=25.0 \times 1.00 / 1000=0.0250$ energy released $=0.025 \times 53.4=1.335(\mathrm{~kJ})$ / 1335 (J) TE on moles used Ignore sign $\begin{aligned} \text { temperature change } & =1335 /(50.0 \times 4.18) \\ & =6.3876 \\ & =6.4\left({ }^{\circ} \mathrm{C} / \mathrm{K}\right) \end{aligned}$ TE on moles and energy Allow final answer to 3 SF $6.39\left({ }^{\circ} \mathrm{C} / \mathrm{K}\right)$ Ignore units Correct answer with no working scores (3)	(3)

Question Number	Answer	Additional Guidance	Mark
7(b)*	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)

The following table shows how the marks should be awarded for structure and lines of reasoning.

	Number of marks awarded for structure of answer and sustained line of reasoning
Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2
Answer is partially structured with some linkages and lines of reasoning.	1
Answer has no linkages between points and is unstructured.	0

Comment: Look for the indicative marking points first, then consider the mark for the structure of answer and sustained line of reasoning.

In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks. 3 and 4 indicative points would get 1 mark for reasoning and 0,1 or 2 indicative points would score zero marks for reasoning.

Indicative content

Hydrochloric acid and nitric acid

- (same value for) hydrochloric acid and nitric acid as they are strong / completely dissociated into ions (in solution)
- reaction taking place is $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} /$ $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

Sulfuric acid

- sulfuric acid is diprotic / dibasic
or
(1 mol of) sulfuric acid provides $2 \mathrm{~mol} \mathrm{H}^{+} /$ produces $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
- so value is (almost) twice that of hydrochloric acid / nitric acid or reverse argument

Ethanoic acid

- ethanoic acid is weak /partially dissociated into ions (in solution) $/ \mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} /$ $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
- some energy is needed to break (O-H) bond(s) to release H^{+}ions (so enthalpy change of neutralisation is less than for a strong acid)
or
enthalpy change of neutralisation includes the enthalpy of dissociation of ethanoic acid so it is less exothermic

Allow correct formulae for names throughout the answer

Ignore sulfuric acid as strong(est) acid

Allow $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$

Allow hydrochloric acid and nitric acid are both monoprotic / monobasic / provide 1 mol H^{+}/ produce $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Allow
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Allow ethanoic acid is the weakest acid

Allow some energy is needed to ionise ethanoic acid

Question Number	Answer	Mark
$\mathbf{8 (a)}$	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because this is for a 100-fold increase in concentration	
	\boldsymbol{B} is not correct because this is for no change in concentration	
\boldsymbol{D} is not correct because this is for a 10000-fold decrease in concentration		

Question Number	Answer	Additional Guidance	Mark
8(b)	- calculation of $\left[\mathrm{H}^{+}\right]$ - expression relating $K_{\mathrm{a}},\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{CH}_{2} \mathrm{OHCOOH}\right]$ (1) - calculation of $\left[\mathrm{CH}_{2} \mathrm{OHCOOH}\right]$	Example of calculation $\begin{align*} & {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=0.01 / 1 \times 10^{-2} / 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \tag{1}\\ & K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{2} \mathrm{OHCOOH}\right]} \\ & \text { or } \\ & {\left[\mathrm{CH}_{2} \mathrm{OHCOOH}\right]=\frac{\left[\mathrm{H}^{+}\right]^{2}}{K_{\mathrm{a}}}} \end{align*}$ Allow [HA] in M2 and M3 $\begin{align*} {\left[\mathrm{CH}_{2} \mathrm{OHCOOH}\right] } & =\frac{0.01^{2}}{1.5 \times 10^{-4}} \tag{1}\\ & =0.667 / 0.67\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{align*}$ Ignore SF except 1 SF Ignore units Correct answer with no working scores (3)	(3)

Question Number	Answer	Additional Guidance	Mark
8(c)(i)	- named indicator - matching colour change - pH range (of indicator) / quoted range lies (completely) in the vertical region (on the titration curve) or indicator will change colour in the vertical / straight / steep region of the graph or pH range of indicator and pH range of vertical region of the graph stated, as long as they overlap	Examples of indicators and colour changes phenol red - red to orange / yellow phenolphthalein ((in ethanol)) - red / pink to colourless (do not allow purple or clear) bromothymol blue - blue to yellow M2 is conditional on a correct indicator in M1 Do not allow unsuitable indicators e.g. litmus Stand alone mark Allow $\mathrm{p} K_{\text {in }}(\pm 1)$ is in the vertical jump or $\mathrm{p} K_{\text {in }}$ is nearest to the pH at the end / equivalence point or indicator will change colour at the end / equivalence point or (because it is a) titration of a weak acid with a strong base	(3)

$\begin{array}{l}\text { Question } \\ \text { Number }\end{array}$	Answer	Mark
$\mathbf{8 (c) (i i)}$	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because used the volumes the wrong way round	
	\boldsymbol{B} is not correct because not used the volume of glycolic acid from the graph	
\boldsymbol{D} is not correct because used a 1:2 mole ratio		

Question Number	Answer	Mark
$\mathbf{8 (c) (i i i)}$	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because this is the pH of glycolic acid	
B is not correct because this is the pH at the end of the vertical jump in the curve		
D is not correct because this is the pH at the start of the vertical jump		

Question Number	Answer	Additional Guidance	Mark
8(d)(i)	An explanation that makes reference to the following points: - the O of the (extra) OH / hydroxyl group (in the 2 / alpha position / $\mathrm{CH}_{2} \mathrm{OH}$) withdraws / attracts electrons - stabilises the anion / $\mathrm{CH}_{2} \mathrm{OHCOO}^{-}$ion or weakens $\mathrm{O}-\mathrm{H}$ bond in acid so hydrogen ion / H^{+} lost more easily	Allow reference to intramolecular hydrogen bonding Allow hydrogen ion / H^{+}more easily dissociates	(2)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (d) (i i)}$	$\left(\mathrm{CH}_{2} \mathrm{OHCOOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow\right)$	Both correct for the mark	(1)
	• $\mathrm{CH}_{2} \mathrm{OHCOO}^{-}+\mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}$	Allow formulae in either order	
		Allow formulae in brackets with charge outside	
		Allow displayed formulae	
		Do not allow $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2}{ }^{+}$	

Question Number	Answer		Additional Guidance	Mark
9(a)	- $\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ or $\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$ - $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$	(1) (1)	Penalise non-ionic equations, e.g. using NaOH or HCl once only Equations must show reaction of ions with $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-} Allow \rightleftharpoons Ignore state symbols Allow $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{+}$and $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$	(2)

Question Number	Answer	Additional Guidance	Mark
9(b)	- calculation of the amount of NaOH / salt - calculation of initial amount of acid - calculation of the amount of acid left - calculation of $\left[\mathrm{H}^{+}\right]$	Allow use of moles instead of concentrations $\begin{aligned} \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] & =-\log \left(1.52446 \times 10^{-5}\right) \\ & =4.817 / 4.82 / 4.8 \end{aligned}$ Allow TE for each step Ignore SF except 1 SF Correct answer without working score (5)	(5)

		Allow alternative methods, for example $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-\log$ [acid] [salt] $\mathrm{pH}=-\log 1.74 \times 10^{-5}-\log \frac{0.0389}{0.0444}$ $\mathrm{pH}=4.817 / 4.82 / 4.8 \text { scores M4 and M5 }$ or $\begin{aligned} & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log [\text { salt }] \\ & {[\text { acid }]} \\ & \mathrm{pH}=-\log 1.74 \times 10^{-5}+\log \frac{0.0444}{0.0389} \\ & \mathrm{pH}=4.817 / 4.82 / 4.8 \text { scores M4 and M5 } \end{aligned}$

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 0 (a) (\mathbf { i })}$	An answer that makes reference to the following point:	(1)	
	(parbon / solid has no (vapour / partial) pressure or (partial) pressure of carbon / solid is constant or carbon does not contribute to the overall pressure (of the system)	Allow the reaction is heterogeneous and (partial) pressure of a pure solid is not included (in K_{p} expression)	Do not allow just 'because carbon is a solid' or 'carbon is not a gas'

Question Number	Answer	Additional Guidance	Mark
10(a)(ii)	An explanation that makes reference to the following points: - there are fewer moles / molecules / particles of gas on the left / reactant side - so equilibrium position/ it moves / shifts to the left / reactant side	Allow 2 moles / molecules of gas on right and 1 mole / molecule on left M2 is conditional on M1 or the idea of fewer particles on the left / decreasing the value of the quotient / Q Do not allow any indication of K_{p} changing	(2)

Question Number	Answer	Additional Guidance	Mark
10(a)(iii)	An explanation that makes reference to the following points: - (forward) reaction is endothermic and so equilibrium constant / K_{p} increases as temperature increases - so equilibrium position / it moves / shifts to the right / product side	Ignore references to ΔG and ΔS M2 is conditional on M1 or endothermic or equilibrium constant increases	(2)

Question Number	Answer	Additional Guidance	Mark
10(b)	- the quotient / Q: $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{2 \times 2}{1 \times 1}=4$, which is larger than K_{c} or (since $K_{c}=1$) the concentrations of the products must be equal to the concentrations of the reactants at equilibrium - the concentrations of CO_{2} and H_{2} / products need to decrease and those of CO and $\mathrm{H}_{2} \mathrm{O}$ / reactants need to increase - so reaction shifts to the left	Allow amounts / moles / (partial) pressures for concentrations Allow calculated $K_{\mathrm{c}} /$ the quotient / Q will be greater than 1 Allow shift so that there is 1.5 mol of each substance M3 conditional on some explanation	(3)

(Total for Question 10 = 12 marks)
TOTAL FOR PAPER = 90 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

