

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE in Chemistry (9CH0) Paper 1 Advanced Inorganic and Physical Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.

Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 9CH0_01_MS_1706
All the material in this publication is copyright
© Pearson Education Ltd 2017

General marking guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the mark scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
1(a)	The only correct answer is B	(1)
	A is not correct because incorrect electrons	
	C is not correct because incorrect protons, neutrons and electrons	
	D is not correct because incorrect protons and neutrons	

Question Number	Answer	Additional Guidance	Mark
1(b)(i)	An explanation that makes reference to the following points:	'ions' scores (0) overall	(2)
	 (pyramidal / this shape) because there are 4 pairs / 3 bond pairs and one lone pair of electrons (around central / P atom) and these are arranged to minimise repulsion	Allow the electron pairs are arranged to minimise repulsion Allow (4) pairs of electrons with maximum separation / as far apart as possible Ignore reference to 'bonds' Ignore wrong shape Ignore repel equally Ignore repulsion between electrons	
	(bond angle less than 109.5°) as lone pair-bond pair repulsion is greater than bond pair-bond pair repulsion (1)	There must be a comparison in M2 Allow lone pairs have greater repulsion than bond pairs Ignore just 'the lone pairs repel more' Ignore repetition of the question e.g. 'reduces the bond angle' Ignore incorrect bond angle stated (Data book value is 100.1°) Do not allow bond angle >109.5°	

Question Number	Answer	Mark
1(b)(ii)	1(b)(ii) The only correct answer is D	
	A is not correct because both incorrect	
	B is not correct because non-polar bond is incorrect	
	C is not correct because non-polar molecule is incorrect	

Question Number	Answer		Additional Guidance	Mark
1(c)	 all 4 ion formulae all 4 m/z values 	(1) (1)	Example of answer: ions m/z $P(^{35}CI)_3^+$ 136 $P(^{35}CI)_2^{37}CI^+$ 138	(2)
	 or any two m/z values with corresponding ion formulae 	(1)	$P^{35}Cl(^{37}Cl)_2^+$ 140 $P(^{37}Cl)_3^+$ 142	
	 the other two m/z values with corresponding ion formulae 	(1)	Allow any other unambiguous way	
			Positive charge only needs to be shown on one of the ions	
			Ignore mass number on P	

(Total for Question 1 = 6 marks)

Question Number	Answer	Additional Guidance	Mark
2(a)	An explanation that makes reference to the following points:	These numbers may be written under the formulae in the equation	(3)
	• N changes from (+)5 to (+)4 (1)	Allow oxidation numbers written as 5+,	
	• O changes from -2 to 0 (in O ₂) (1)	4+, 2-	
		Ignore unchanged oxidation numbers of magnesium and oxygen	
	 so nitrogen / N is reduced (as the oxidation number has decreased) and 	Allow this mark if incorrect / missing oxidation numbers in M1 and M2	
	oxygen / O (in forming O_2) is oxidised (as the oxidation number has increased) (1)	Ignore general statement about redox	
		Ignore redox explained in terms of electron gain or loss	

Question Number	Answer	Additional Guidance	Mark
2(b)	An explanation that makes reference to the following points:	Penalise omission of 'ion' or just 'calcium / Ca / magnesium / Mg' without charge, or reference to atom or molecule once only	(3)
	• Size	Ignore general references to ionic / covalent character	
	calcium ion / Ca ²⁺ has larger (ionic) radius / is larger than magnesium ion or magnesium ion / Mg ²⁺ has smaller (ionic) radius / is smaller than calcium ion (1)	Allow ionic radius increases down the group / decreases up the group Allow magnesium ions have a higher charge density (than calcium ions) Ignore atomic radius Ignore effective nuclear charge	
	Polarising power so calcium ion/ Ca ²⁺ causes less polarisation/ distortion or magnesium ion/ Mg ²⁺ causes more polarisation/ distortion	Allow the cation causes less / more polarisation if it is clear from M1 which cation is involved	
	• What is polarised of the nitrate (ion / electron cloud) / NO ₃ ⁻ / anion / negative ion / N—O bonds / N=O bonds / NO bonds (1)	Do not allow this mark for carbonate / C-O bonds Do not allow mention of bond between cation and anion Note Nitrate ions are less polarised by Ca ²⁺ / more polarised by Mg ²⁺ scores M2 and M3	

(Total for Question 2 = 6 marks)

Question Number	Answer	Additional Guidance	Mark
3(a)	An explanation that makes reference to the following points:	An answer that states 'covalent bonds break' or 'bonds between atoms break' or refers to 'ions' scores (0) overall	(2)
		Allow reverse argument for M1 and M2	
	• from chlorine to iodine / down the group, the number of electrons (in the molecule / atom) increases / changes from 34 to 106 / 17 to 53 (1)	Allow iodine has more / most electron shells (than chlorine and/or bromine)	
	mereases, enanges from 51 to 100, 17 to 35 (2)	Ignore 'the size of the atoms /molecules increases from chlorine to iodine'	
		Do not allow incorrect numbers of electrons	
	so the strength of the London / instantaneous dipole-(induced) dipole forces increases / there are more London / instantaneous dipole-(induced) dipole forces	Allow iodine has the strongest London force and most energy is needed to separate the molecules	
	and more energy is needed to separate the molecules (1)	Allow more energy is need to overcome / break the London forces / bonds instead of separate the molecules	
		Allow dispersion forces / van der Waals forces for London forces	
		Ignore higher temperature needed to separate the molecules	
		Do not award dipole-dipole forces / just 'intermolecular forces'	

Question Number	Answer	Additional Guidance	Mark
3(b)	An explanation that makes reference to the following points:	Allow the oxidation numbers written by the species in the table	(3)
		(+)6 only needs to be mentioned once in M1 or M2	
		Allow references to potassium halides / halogens / hydrogen halides instead of halide ions	
		For full marks, the answer must identify iodide as the strongest reducing agent	
	 iodide ions are the strongest reducing agent because iodide ions / I⁻/ (potassium) iodide reduces sulfur (in sulfuric acid) from +6 to 0 in sulfur / -2 in H₂S	Only 1 oxidation number change is needed. If both are given, both must be correct	
	 (whereas) bromide ions / Br⁻/ (potassium) bromide reduces sulfur (in sulfuric acid) from +6 to +4 (1) 	Allow bromide ions are stronger reducing agents than chloride ions because they are oxidised from -1 to 0	
	 (whereas) chloride ions / Cl⁻/ (potassium) chloride do not reduce sulfuric acid / sulfur / S (as there is no change in oxidation number of Cl or S) 	Allow just 'it is not a redox reaction'	

Question Number	Answer	
3(c)(i)	The only correct answer is A	(1)
	B is not correct because Cl ⁻ is not an oxidising agent	
	$m{\mathcal{C}}$ is not correct because I_2 is not a powerful enough oxidising agent	
	D is not correct because Mn ²⁺ is not an oxidising agent	

Question Number	Answer	Additional Guidance	Mark
3(c)(ii)	 all species on correct sides of equation and no electrons / electrons cancelled (1) balancing correct species (1) E^e_{cell} value (1) 	Example of ionic equation $2MnO_4^- + 16H^+ + 10Br^- \rightarrow 2Mn^{2+} + 8H_2O + 5Br_2$ Allow \Rightarrow Allow correct species if shown in working with half-equations but slip made in final equation e.g. charge missing Ignore state symbols Allow multiples Allow M2 for almost correct species $E^{\bullet}_{cell} \ (= \ 1.51 - 1.09) = (+)0.42 \ (V)$ No TE on incorrect equation	(3)

(Total for Question 3 = 9 marks)

Question Number	Answer	Mark
4(a)	The only correct answer is B	(1)
	A is not correct because 4 of the 3d electrons should be unpaired	
	C is not correct because there should not be any electrons in the 4s orbital	
	D is not correct because there should not be any electrons in the 4s orbital	

Question Number	Answer	Additional Guidance	Mark
4(b)	An explanation that makes reference to the following points:		(2)
	• (zinc (ions) / Zn ²⁺) has / have a full (3)d sub-shell / 3d ¹⁰ / all (3)d orbital s are full (1)	Allow zinc (ions) / Zn ²⁺ do not have a partially filled / incomplete (3)d (sub-) shell / no empty (3)d orbitals	
		Do not allow zinc atoms	
	so d-d transitions cannot take place or electrons cannot move between (3)d orbitals	Ignore omission of 'd' in the 'or's, if it is included in M1	
	or electrons cannot be promoted / excited to higher (3)d orbitals (1)	Do not allow the (3)d orbitals do not split / the (3)d subshell does not split	
		Ignore just 'movement to different energy level'	

Question Number	Answer	Additional Guidance	Mark
4(c)(i)	2 water ligands joined between O and Fe (1) 2 ethanedioate ligands drawn correctly showing all the bonds and joined between single-bonded O atoms and Fe as shown (1)	Allow water ligands arranged as <i>cis</i> or <i>trans</i> Allow delocalised bonds in ethanedioate ions Allow bonds not shown in H ₂ O, provided the ligands are attached to Fe ²⁺ through oxygen atoms Ignore bond lengths and angles Ignore wedges and dotted lines to show shape Ignore missing lone pairs and arrowheads Ignore missing square brackets and charge / incorrect charge Ignore –ve charges on ethanedioate ions / +ve charge on Fe	(2)

Question Number	Answer	Additional Guidance	Mark
4(c)(ii)	An explanation that makes reference to the following points:		(2)
	• (there are) more particles / moles / species on the right of the equation (than on the left)	Do not allow incorrect numbers of particles	
	or (there is an increase from) 3 particles on the left of the equation to 5 on the right (1)	Do not allow 3 molecules on the left and 5 molecules on the right	
	• so ΔS_{system} increases / is positive (and $\Delta S_{\text{surroundings}}$ is unchanged so ΔS_{total} increases) (1)	Allow ΔS_{total} is positive / increasing	
		Allow entropy / ΔS increases	
		Allow there is a positive entropy change	
		Ignore just there is an increase in disorder (from left to right)	
		Ignore $\Delta S_{ ext{surroundings}}$ changes	
		Ignore just 'entropy is positive'	
		Ignore references to free energy	

Question Number	Answer		Additional Guidance	Mark
4(d)	• Fe ²⁺ oxidised to Fe ³⁺ in reaction with $S_2O_8^{2-}$	(1)	Examples of equations $2Fe^{2+} + S_2O_8^{2-} \rightarrow 2Fe^{3+} + 2SO_4^{2-}$	(2)
	• Fe ³⁺ reduced to Fe ²⁺ in reaction with I ⁻	(1)	$2Fe^{3+}+2I^-\rightarrow 2Fe^{2+}+I_2$	
			Ignore state symbols	
			Allow equations in either order	
			Allow multiples	
			Penalise uncancelled electrons once only	
			Note If no other mark is awarded, allow (1) for all correct species in 2 unbalanced equations	

(Total for Question 4 = 9 marks)

Question Number		
5(a)	The only correct answer is C	(1)
	A is not correct because standard enthalpy of formation is for making 1 moles of a compound	
	B is not correct because standard enthalpy of formation is for making 1 moles of a compound	
	D is not correct because oxygen must be O ₂	

Question Number	Answer	Additional Guidance	Mark
5(b)	calculation of energy needed to break bonds	Example of calculation Energy to break bonds: $(C-C) + (C-H) + (C-O)$ = $347 + 413 + (C-O)$ = $(C-O) + 760$ (kJ)	(3)
	calculation of energy released when bonds are made	Energy released in forming bonds: $(C=C) + (O-H)$ = 612 + 464 = $(-)$ 1076 (kJ)	
	 calculation of mean bond enthalpy of C—O	(C-O) + 760 - 1076 = 42 $(C-O) = (+)358 \text{ (kJ mol}^{-1})$ TE on M1 and M2	
		If all bonds broken: Energy to break bonds = $(C-O) + 4049$ (kJ) Energy released in forming bonds = $(-)4365$ (kJ)	
		Ignore units	
		Correct answer with no working scores (3)	
		Allow correct working in M1 and M2 if answers not evaluated	

Question Number	Answer	Mark
5(c)	The only correct answer is A	(1)
	B is not correct because all increase in entropy as disorder increases when gases are formed	
	C is not correct because all increase in entropy as disorder increases when gases are formed	
	D is not correct because all increase in entropy as disorder increases when gases are formed	

Question Number	Answer	
5(d)	The only correct answer is D	(1)
	A is not correct because $\Delta S_{\text{surroundings}}$ is incorrect	
	B is not correct because $\Delta S_{\text{surroundings}}$ is incorrect	
	$m{C}$ is not correct because sign of $\Delta H/T$ is incorrect	

Question Number	Answer	Additional Guidance	Mark
5(e)	• calculation of ΔG (1)	Penalise incorrect units in M1 or M3 once only Working is not required for the calculations	(3)
	• ΔG is positive / >0 so reaction is not feasible (1)	Stand alone mark Allow ΔG must be negative for a reaction to be feasible Ignore 'so reaction is not feasible' without a reason No TE on a calculated negative value	
	• calculation of T (1)	$\frac{\text{Example of calculation}}{\Delta G = 0, \text{ so } \Delta H = T \Delta S_{(\text{sys})} \text{ or } T = \Delta H / \Delta S_{(\text{sys})}$ or $\Delta S_{\text{total}} = \Delta S_{\text{sys}} - \Delta H / T = 0, \text{ so } T = \Delta H / \Delta S_{(\text{sys})}$ $T = 178 / 0.165 = 1078.8 / 1079 / 1080 \text{ (K)}$ or $T = 178000 / 165 = 1078.8 / 1079 / 1080 \text{ (K)}$ or $T = 806 \text{ (°C)}$	
		Ignore SF except 1 SF	

(Total for Question 5 = 9 marks)

Question Number	Answer	Additional Guidance	Mark
6(a)(i)		Example of diagram	(1)
	 dot-and-cross diagram and charges 	$\begin{bmatrix} \begin{bmatrix} \mathbf{B} - \mathbf{J} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathbf{B} - \mathbf{J} \end{bmatrix} \end{bmatrix}^{2+} \begin{bmatrix} \mathbf{B} - \mathbf{J} \end{bmatrix}$	
		Circles are not needed	
		Allow no electrons or 8 electrons on outer shell of Mg	
		Allow dots or crosses for all electrons	
		Allow diagrams without square brackets, provided charges are shown	
		Allow alternative ways of showing that there are 2 bromide ions	
		Ignore inner shell electrons	

Question Number	Answer	Additional Guidance	Mark
6(a)(ii)	(conducts electricity when) molten / liquid and	Both needed for the mark	(1)
	dissolved in water / (in) aqueous (solution)	Ignore gaseous Allow 'in solution / dissolved'	

Question Number	Answer and Additional Guidar	ıce	Mark
6(b)(i)	Box 3 $Mg^{2+}(g) + 2Br(g) + 2e^{(-)}$		(3)
	Box 2		
	Box 1 $P(g) = \frac{2^{nd} IE[Mg^{+}(g)]/(+)1451}{Mg^{+}(g) + Br_{2}(I) + e^{(-)}}$ $P(g) = \frac{15I IE[Mg/g)I/(+)739}{LE[MgBr_{2}(g)]}$ $P(g) = \frac{15I IE[Mg/g)I/(+)739}{LE[MgBr_{2}(g)]}$	Box 4	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$Mg(s) + Br_2(I)$		
	Δ_{f} H[MgBr ₂ (s)]/-524 MgBr ₂ (s)		
	 Correct arrows with 1st and 2nd IE of Mg labelled and correct Mg boxes 1 and 2 or 2 and 3 	symbols with state symbols in (1)	
	• $2 \times \Delta_{at} H^e[\frac{1}{2}Br_2(I)] / 2 \times (+)112 / (+)224$ and $2Br(g)$ in box 3 or 1 $2Br^-(g)$ in box 4 and correct arrows	<pre>and 2 x EA[Br(g)] labelled and</pre>	
	• LE[MgBr ₂ (s)] / -2440 labelled and arrow in correct direction Allow any unambiguous labels for the arrows with words and/or number Accept enthalpy change of atomisation of bromine before IEs of material Ignore missing electrons / $2e^{(-)}$ in boxes 1, 2 and 3 Allow 1 state symbol missing but penalise 2 missing, or an incorrect	gnesium	

Question Number	Answer	Additional Guidance	Mark
6(b)(ii)	 correct expression for 2 x EA(Br) in numbers or symbols (1) 	Example of calculation $2 \times EA(Br) = -(2 \times +112) - (+1451) - (+738)$ -(+148) + (-524) - (-2440)	(2)
	• calculation of EA(Br) (1)	EA(Br) = $-\frac{645}{2}$ = $-322.5 / -323$ (kJ mol ⁻¹)	
		Correct answer with no working scores (2)	
		Allow for 1 mark: $(+)322.5 / (+)323 \text{ (wrong sign)} \\ -266.5 / -267 \text{ (2 missing from } \Delta_{at}H \text{ (Br))} \\ -645 \text{ (2 missing from EA)} \\ -533 \text{ (both 2s missing for Br)}$	
		Ignore units	
		No TE on incorrect arrows in (b)(i)	

Question Number	Answer	Additional Guidance	Mark
6(c)(i)	An explanation that makes reference to the following points:	Penalise reference to ion once only Ignore reference to atomic radius	(3)
	Nuclear charge magnesium (atom) / Mg has more protons than sodium (atom) / Na or magnesium / Mg has a greater (effective) nuclear charge (than sodium / Na)		
	Shielding (outer) electron in magnesium (atom) / Mg in the same (quantum) shell / energy level / sub-shell / orbital as in a sodium atom / Na or shielding in magnesium atom / Mg similar to / same as that in sodium atom / Na	Allow correct E.C of both atoms Allow same number of (quantum) shells / energy levels in Mg and Na	
	Attraction so the force of attraction between the nucleus and the (outer) electron is greater in magnesium (atom) / Mg (than in sodium atom / Na)	Allow the (outer) electron in Mg is held more tightly to the nucleus (than in Na) Note An answer that describes the trend across a period, without one reference to either sodium or magnesium, scores maximum (2) marks	

Question Number	Answer	Additional Guidance	Mark
6(c)(ii)	correct equation with state symbols	$\frac{\text{Examples of equations}}{\text{Mg}^{2+}(g) \rightarrow \text{Mg}^{3+}(g) + e^{(-)}}$	(1)
		$Mg^{2+}(g) - e^{(-)} \rightarrow Mg^{3+}(g)$	
		Ignore state symbol for the electron	
		Do not allow ⇌	

(Total for Question 6 = 11 marks)

Question Number	Answer		Additional Guidance	Mark
7(a)	calculation of moles used	(1)	Example of calculation moles used = $25.0 \times 1.00/1000 = 0.0250$	(3)
	calculation of energy for that number of moles	(1)	energy released = 0.025 x 53.4 = 1.335 (kJ) / 1335 (J) TE on moles used Ignore sign	
	calculation of temperature change and gives answer to 2 SF (because a school thermometer cannot measure to 3 SF)	(1)	temperature change = 1335/(50.0 x 4.18) = 6.3876 = 6.4 (°C / K) TE on moles and energy Allow final answer to 3 SF 6.39 (°C / K) Ignore units Correct answer with no working scores (3)	

Question Number		Answ	/er	Additional Guidance	Mark
7(b)*	coherent and fully-sustained Marks are awa answer is stru The following	logically structured reasoning. arded for indicative tured and shows	nt's ability to show a ed answer with linkages and we content and for how the slines of reasoning. The marks should be	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	
					(6)

The following table shows how the marks should be awarded for structure and lines of reasoning.

	Number of marks awarded for structure of
	answer and
	sustained line of
	reasoning
Answer shows a coherent and	2
logical structure with linkages	_
and fully sustained lines of	
reasoning demonstrated	
throughout.	
Answer is partially structured	1
with some linkages and lines of	
reasoning.	
Answer has no linkages between	0
points and is unstructured.	

Comment: Look for the indicative marking points first, then consider the mark for the structure of answer and sustained line of reasoning.

In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks. 3 and 4 indicative points would get 1 mark for reasoning and 0, 1 or 2 indicative points would score zero marks for reasoning.

In	dicative content	Allow correct formulae for names throughout the answer
	ydrochloric acid and nitric acid (same value for) hydrochloric acid and nitric acid as they are strong / completely dissociated into ions (in solution)	Ignore sulfuric acid as strong(est) acid
•	reaction taking place is $H^+ + OH^- \rightarrow H_2O$ / $H_3O^+ + OH^- \rightarrow 2H_2O$	Allow HCl + NaOH \rightarrow NaCl + H ₂ O and HNO ₃ + NaOH \rightarrow NaNO ₃ + H ₂ O
		Allow hydrochloric acid and nitric acid are both monoprotic / monobasic / provide 1 mol H ⁺ / produce 1 mol H ₂ O
	Ifuric acid sulfuric acid is diprotic / dibasic or (1 mol of) sulfuric acid provides 2 mol H+ / produces 2 mol H ₂ O	Allow $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$
•	so value is (almost) twice that of hydrochloric acid / nitric acid or reverse argument	
Eti •	hanoic acid ethanoic acid is weak /partially dissociated into ions (in solution) / $CH_3COOH \Rightarrow CH_3COO^- + H^+$ / $CH_3COOH + H_2O \Rightarrow CH_3COO^- + H_3O^+$	Allow ethanoic acid is the weakest acid
•	some energy is needed to break (O-H) bond(s) to release H ⁺ ions (so enthalpy change of neutralisation is less than for a strong acid)	Allow some energy is needed to ionise ethanoic acid

enthalpy change of neutralisation includes the enthalpy of dissociation of ethanoic acid so it is less exothermic

(Total for Question 7 = 9 marks)

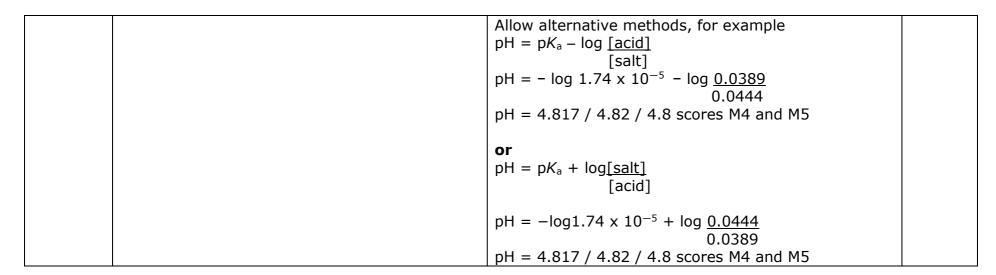
Question Number	Answer	Mark
8(a)	The only correct answer is C	(1)
	A is not correct because this is for a 100-fold increase in concentration	
	B is not correct because this is for no change in concentration	
	D is not correct because this is for a 10000-fold decrease in concentration	

Question Number	Answer	Additional Guidance	Mark
8(b)	• calculation of [H ⁺] (1)	Example of calculation $[H^+] = 10^{-pH} = 0.01 / 1 \times 10^{-2} / 10^{-2} \text{ (mol dm}^{-3)}$	(3)
	• expression relating K_a , [H ⁺] and [CH ₂ OHCOOH] (1)	$K_a = \frac{[H^+]^2}{[CH_2OHCOOH]}$ or $[CH_2OHCOOH] = \frac{[H^+]^2}{K_a}$ Allow [HA] in M2 and M3	
	• calculation of [CH₂OHCOOH] (1)	$[CH2OHCOOH] = \underbrace{0.01^{2}}_{1.5 \times 10^{-4}}$ $= 0.667 / 0.67 \text{ (mol dm}^{-3}\text{)}$	
		Ignore SF except 1 SF	
		Ignore units	
		Correct answer with no working scores (3)	

Question Number	Answer	Additional Guidance	Mark
• nam • mate • pH re (com curv or indic / ste or pH re	range (of indicator) / quoted range lies npletely) in the vertical region (on the titration	Examples of indicators and colour changes phenol red – red to orange / yellow phenolphthalein ((in ethanol)) – red / pink to colourless (do not allow purple or clear) bromothymol blue – blue to yellow M2 is conditional on a correct indicator in M1 Do not allow unsuitable indicators e.g. litmus Stand alone mark Allow pK _{in} (± 1) is in the vertical jump or pK _{in} is nearest to the pH at the end / equivalence point or indicator will change colour at the end / equivalence point or (because it is a) titration of a weak acid with a strong base	(3)

Question Number	Answer	Mark
8(c)(ii)	The only correct answer is C	(1)
	A is not correct because used the volumes the wrong way round	
	B is not correct because not used the volume of glycolic acid from the graph	
	D is not correct because used a 1:2 mole ratio	

Question Number	Answer	Mark
8(c)(iii)	The only correct answer is C	
	A is not correct because this is the pH of glycolic acid	
	B is not correct because this is the pH at the end of the vertical jump in the curve	
	D is not correct because this is the pH at the start of the vertical jump	


Question Number	Answer	Additional Guidance	Mark
8(d)(i)	An explanation that makes reference to the following points:		(2)
	 the O of the (extra) OH / hydroxyl group (in the 2 / alpha position / CH₂OH) withdraws / attracts electrons 	Allow reference to intramolecular hydrogen bonding	
	 stabilises the anion / CH₂OHCOO⁻ ion or weakens O-H bond in acid so hydrogen ion / H⁺ lost more easily (1)	Allow hydrogen ion / H ⁺ more easily dissociates	

Question Number	Answer	Additional Guidance	Mark
8(d)(ii)	(CH ₂ OHCOOH + CH ₃ COOH →)	Both correct for the mark	(1)
	• CH ₂ OHCOO [−] + CH ₃ COOH ₂ ⁺	Allow formulae in either order	
		Allow formulae in brackets with charge outside	
		Allow displayed formulae	
		Do not allow CH ₃ C(OH) ₂ ⁺	

(Total for Question 8 = 12 marks)

Question Number	Answer	Additional Guidance	Mark
9(a)		Penalise non-ionic equations, e.g. using NaOH or HCl once only	(2)
		Equations must show reaction of ions with H ⁺ /H ₃ O ⁺ and OH ⁻	
		Allow ≠	
		Ignore state symbols	
	• $HPO_4^{2-} + H^+ \rightarrow H_2PO_4^-$		
	or $HPO_4^{2-} + H_3O^+ \rightarrow H_2PO_4^- + H_2O$ (1)		
	• $H_2PO_4^- + OH^- \rightarrow HPO_4^{2-} + H_2O$ (1)	Allow $H_2PO_4^- \rightarrow HPO_4^{2-} + H^+$ and $H^+ + OH^- \rightarrow H_2O$	

Question Number	Answer	Additional Guidance	Mark
9(b)	calculation of the amount of NaOH / salt	Example of calculation amount of NaOH = amount of salt formed =0.100 x 20.0/1000 = 0.00200	(5)
	• calculation of initial amount of acid (1)	initial amount of acid = 0.150 x 25.0/1000 = 0.00375	
	• calculation of the amount of acid left (1)	amount of acid left = 0.00375 - 0.00200 = 0.00175	
	• calculation of [H ⁺] (1)	[salt] = $0.00200 \times 1000/45.0 = 0.0444 \text{ (mol dm}^{-3}\text{)}$ [acid] = $0.00175 \times 1000/45.0 = 0.0389 \text{(mol dm}^{-3}\text{)}$	
		$K_a = [H^+][salt]$ so $[H^+] = K_a[acid]$ [salt] $[H^+] = 1.74 \times 10^{-5} \times 0.0389/0.0444$ $= 1.52446 \times 10^{-5}$ (mol dm ⁻³)	
		Allow use of moles instead of concentrations	
	• calculation of pH (1)	pH = $-\log[H^+]$ = $-\log(1.52446 \times 10^{-5})$ = $4.817 / 4.82 / 4.8$	
		Allow TE for each step	
		Ignore SF except 1 SF	
		Correct answer without working score (5)	

(Total for Question 9 = 7 marks)

Question Number	Answer	Additional Guidance	Mark
10(a)(i)	An answer that makes reference to the following point:		(1)
	 carbon / solid has no (vapour / partial) pressure or (partial) pressure of carbon / solid is constant or 	Allow the reaction is heterogeneous and (partial) pressure of a pure solid is not included (in K_p expression)	
	carbon does not contribute to the overall pressure (of the system)	Do not allow just 'because carbon is a solid' or 'carbon is not a gas'	

Question Number	Answer	Additional Guidance	Mark
10(a)(ii)	An explanation that makes reference to the following points:		(2)
	 there are fewer moles / molecules / particles of gas on the left / reactant side (1) 	Allow 2 moles / molecules of gas on right and 1 mole / molecule on left	
	 so equilibrium position/ it moves / shifts to the left / reactant side (1) 	M2 is conditional on M1 or the idea of fewer particles on the left / decreasing the value of the quotient / Q	
		Do not allow any indication of K_p changing	

Question Number	Answer	Additional Guidance	Mark	
10(a)(iii)	An explanation that makes reference to the following points		(2)	
	 (forward) reaction is endothermic and so equilibrium constant / K_p increases as temperature increases 	(1)	Ignore references to ΔG and ΔS	
	 so equilibrium position / it moves / shifts to the right / product side 	(1)	M2 is conditional on M1 or endothermic or equilibrium constant increases	

Question Number		Answer			Additional Guidance			Mark	
10(a)(iv)				Ex	Example of calculation:				(4)
						H ₂ O(g)	H ₂ (g)	CO(g)	
					Initial	1.00	0	0	
					moles				
	•	calculation of moles of each substance at			Eqm	1.00 - 0.81	0.81	0.81	
		equilibrium	(1)		moles	= 0.19			
		•	. ,				.81 + 0.81 =		
					Mole	0.19/1.81	0.81/1.81	0.81/1.81	
					fraction	= 0.10497		= 0.4475	
					Partial	0.10497 x	0.4475 x	0.4475 x	
	•	calculation of partial pressure of each			pressure	2.0	2.0	2.0	
		substance	(1)		/atm	=0.20994	= 0.895	=0.895	
		Substance ((-)	$K_p = 0.895 \times 0.895$					
							20994		
	•	calculation of K_p	(1)			= 3.815 / 3	3.82 / 3.8 atr	m	
		Calculation of \mathcal{N}_p	(-)			,	,		
	•	unita (stand along mark)	/ 1 \		3.8144 /	3.814 / 3.81	. / 3.8 atm fr	om 0.105	
	•	units (stand alone mark)	(1)		and 0.21		, 515 5511111		
					ana oizi	·			
					Correct a	inswer with i	ınits but no v	working	
					scores (4		ariics but iio v	WOLKING	
					300163 (4	7)			
					Allow TE	for M2 and N	1 3		
					Allow IL	TOT PIZ GITG I	15		
					Ignoro S	F avcont 1 Cl	=		
					ignore 5	F except 1 SI			

Question Number	Answer		Additional Guidance	Mark
10(b)			Allow amounts / moles / (partial) pressures for concentrations	(3)
	• the quotient / Q:		Allow calculated K_c / the quotient / Q will be greater than 1	
	or (since $K_c = 1$) the concentrations of the products mus equal to the concentrations of the reactants at equilibrium	t be (1)		
	 the concentrations of CO₂ and H₂ / products need to decrease and 		Allow shift so that there is 1.5 mol of each substance	
	those of CO and H ₂ O / reactants need to increase	(1)		
	so reaction shifts to the left	(1)	M3 conditional on some explanation	

(Total for Question 10 = 12 marks)

TOTAL FOR PAPER = 90 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email publication.orders@edexcel.com

Order Code

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

