

A-level Chemistry (7405/1)

Paper 1: Inorganic and Physical Chemistry

Specimen 2015 v0.5

Session

2 hours

Materials

For this paper you must have:

- the Data Booklet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer **all** questions.
- Show all your working.

Information

• The maximum mark for this paper is 105.

Please write clearly, in block capitals, to allow character computer recognition.					
Centre number		Candidate number			
Surname					
Forename(s)					
Candidate sign	ature	/			

7405/1

Answer all questions.					
01.1	Explain how the electron pair repulsion theory can be used to deduce the shape of, and the bond angle in, PF_3 [6 marks]				

01.2	State the full electron configuration of a cobalt(II) ion. [1 mark]
01.3	Suggest one reason why electron pair repulsion theory cannot be used to predict the shape of the $[CoCl_4]^{2^-}$ ion. [1 mark]
01.4	Predict the shape of, and the bond angle in, the complex rhodium ion [RhCl ₄] ²⁻ [2 marks] Shape
	Bond angle
	Turn over for the next question

02.1	Explain why the atomic radii of the elements decrease across Period 3 from sodium to chlorine. [2 marks]
02.2	Explain why the melting point of sulfur (S_8) is greater than that of phosphorus (P_4) . [2 marks]
02.3	Explain why sodium oxide forms an alkaline solution when it reacts with water. [2 marks]

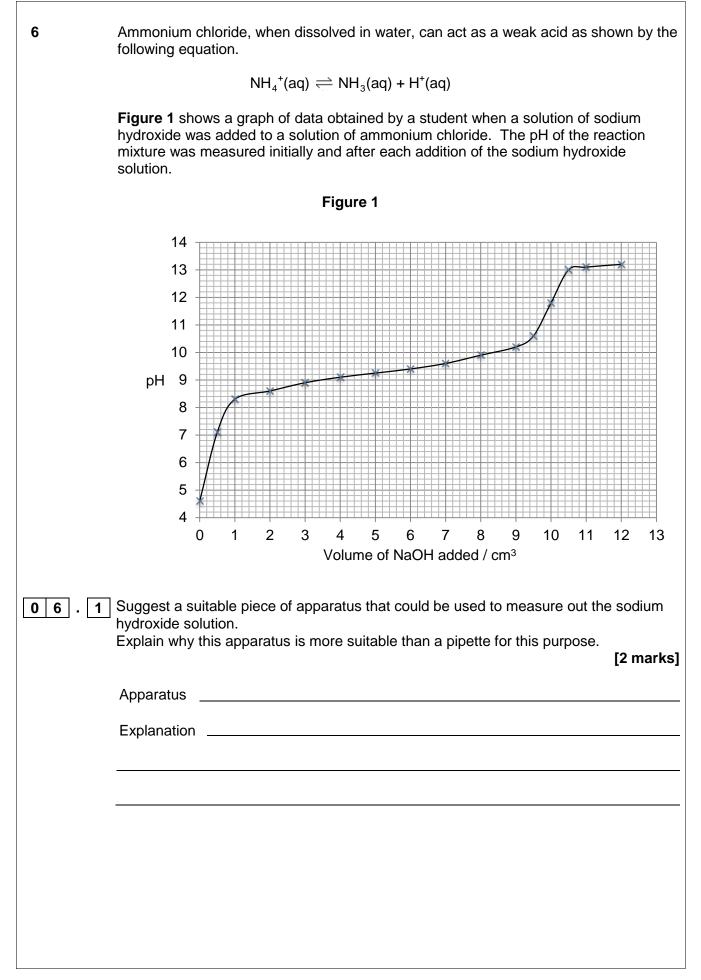
Г

02.4	Write an ionic equation for the reaction of phosphorus(V) oxide with an exce		
	sodium hydroxide solution.	[1 mark]	
	Turn over for the next question		
Barcode	Typesetter code Tu	urn over ▶	

	Fuel cells are an increasingly important energy source for vehic potentials are used in understanding some familiar chemical re fuel cells.		
	Table 1 contains some standard electrode potential data.		
	Table 1		
	Electrode half-equation	<i>E</i> ⁹ / V	
	$F_2 + 2e^- \longrightarrow 2F^-$	+2.87	
	$Cl_2 + 2e^- \longrightarrow 2Cl^-$	+1.36	
	$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$	+1.23	
	$Br_2 + 2e^- \longrightarrow 2Br^-$	+1.07	
	$I_2 + 2e^- \longrightarrow 2I^-$	+0.54	
	$O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$	+0.40	
	$SO_4^{2-} + 4H^+ + 2e^- \longrightarrow SO_2 + 2H_2O$	+0.17	
	$2H^+ + 2e^- \longrightarrow H_2$	0.00	
	$4H_2O + 4e^- \longrightarrow 4OH^- + 2H_2$	-0.83	
03.1	A salt bridge was used in a cell to measure electrode potent Explain the function of the salt bridge.	ldi.	[2 marks]
03.2	2 Use data from Table 1 to deduce the halide ion that is the w	/eakest reducino	g agent. [1 mark]

03.3	Use data from Table 1 to justify why sulfate ions should not be capable of oxidising bromide ions.
	[1 mark]
03.4	Use data from Table 1 to calculate a value for the EMF of a hydrogen–oxygen fuel cell operating under alkaline conditions.
	[1 mark]
	EMF = V
03.5	There are two ways to use hydrogen as a fuel for cars. One way is in a fuel cell to power an electric motor, the other is as a fuel in an internal combustion engine.
	Suggest the major advantage of using the fuel cell.
	[1 mark]
	Turn over for the next question

C F	Many chemical processes release waste products into the atmosphere. Scientists are developing new solid catalysts to convert more efficiently these emissions into useful products, such as fuels. One example is a catalyst to convert these emissions into methanol. The catalyst is thought to work by breaking a H–H bond.					
/	An equation for this formation of methanol is given below.					
	$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g)$	g) + H ₂ O(g) $\Delta H =$	–49 kJ mol	-1	
S	Some mean bond enthalpies are sho	wn in Tabl e	e 2.			
	Та	able 2				
	Bond	C=O	C–H	C–O	O–H]
	Mean bond enthalpy / kJ mol ⁻¹	743	412	360	463	
	or the H–H bond enthalpy. H–H t	oond entha	lpy =			marks] J mol ⁻¹
04.2/	A data book value for the H–H bond e	enthalpy is	436 kJ mo	Γ ¹ .		
5	Suggest one reason why this value is different from your answer to Question 4.1 . [1 mark]					
-						
-						
-						


04.3	Suggest one environmental advantage of manufacturing methanol fuel by this reaction.
	[1 mark]
04.4	Use Le Chatelier's principle to justify why the reaction is carried out at a high pressure rather than at atmospheric pressure. [3 marks]
04.5	Suggest why the catalyst used in this process may become less efficient if the carbon dioxide and hydrogen contain impurities. [1 mark]
	Question 4 continues on the next page

0 4 . 6 In a laboratory experiment to investigate the reaction shown in the equation 1.0 mol of carbon dioxide and 3.0 mol of hydrogen were sealed into a cont the mixture had reached equilibrium, at a pressure of 500 kPa, the yield of was 0.86 mol.	tainer. After
$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$	
Calculate a value for K_p Give your answer to the appropriate number of significant figures. Give units with your answer.	[7 marks]
K _p = Units =	

5	Table 3 contains some entromethanol from carbon dioxidtemperature of 250 °C.					
		Table 3				
	Substance	CO ₂ (g)	H ₂ (g)	CH ₃ OH(g)	H ₂ O(g)	
	Entropy (S ^e) / J K ⁻¹ mol ⁻¹	214	131	238	189	
	$CO_2(g) + 3H_2(g) \rightleftharpoons 0$	CH ₃ OH(g) +	H ₂ O(g)	$\Delta H = -49$	kJ mol ^{−1}	
05.	1 Use this enthalpy change an free-energy change of the re Give units with your answer.	action at 25	Table 2 to 50 °C.	o calculate a v	value for the	[4 marks]
	Free-energy	/ change =		(Jnits =	

05.2	Calculate a value for the temperature when the reaction becomes feasible. [2 ma	ırks]
	Temperature =	_К
0 5.3	Gaseous methanol from this reaction is liquefied by cooling before storage.	
	Draw a diagram showing the interaction between two molecules of methanol. Explain why methanol is easy to liquefy. [4 ma	ırks]
	Diagram	
	Explanation	

Typesetter code

06.2	Use information from the curve in Figure 1 to explain why the end point of this would be difficult to judge accurately using an indicator.	s reaction [2 marks]
06.3	The pH at the end point of this reaction is 11.8	
	Use this pH value and the ionic product of water, $K_w = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$, calculate the concentration of hydroxide ions at the end point of the reaction.	to [3 marks]
	Concentration =	_ mol dm ⁻³
	Question 6 continues on the next page	

06.4	The expression for the acid dissociation constant for aqueous ammonium ions is
	$Ka = \frac{\left[NH^3\right]\left[H^+\right]}{\left[NH_4 ^+\right]}$
	The initial concentration of the ammonium chloride solution was 2.00 mol dm ⁻³ . Use the pH of this solution, before any sodium hydroxide had been added, to calculate a value for K_a [3 marks]
06.5	$K_{\rm a}$ = mol dm ⁻³] A solution contains equal concentrations of ammonia and ammonium ions. Use your value of $K_{\rm a}$ from Question 6.4 to calculate the pH of this solution. Explain your working.
	(If you were unable to calculate a value for K_a you may assume that it has the value 4.75 × 10 ⁻⁹ mol dm ⁻³ . This is not the correct value.) [2 marks]
	pH=

		X , Y and Z .					
	Elements	X , Y and Z a	re Ca, Sc and		n that order.		
		1	Tab	le 4	1		Γ
		First	Second	Third	Fourth	Fifth	Sixth
	X	648	1370	2870	4600	6280	12 400
	Y	590	1150	4940	6480	8120	10 496
	Z	632	1240	2390	7110	8870	10 720
lf you wish to	change y		you must cros reviously cros	s out your c			
as shown.							
0 7 . 1	Which e	element is ca	alcium?				[1 mar
	x	0					
	Y	0					
	7	0					
	Z						
07.2		element is va	anadium?				[1 mar
07.2			anadium?				[1 mar
0 7 . 2	Which e	element is va	anadium?				[1 mar

Typesetter code

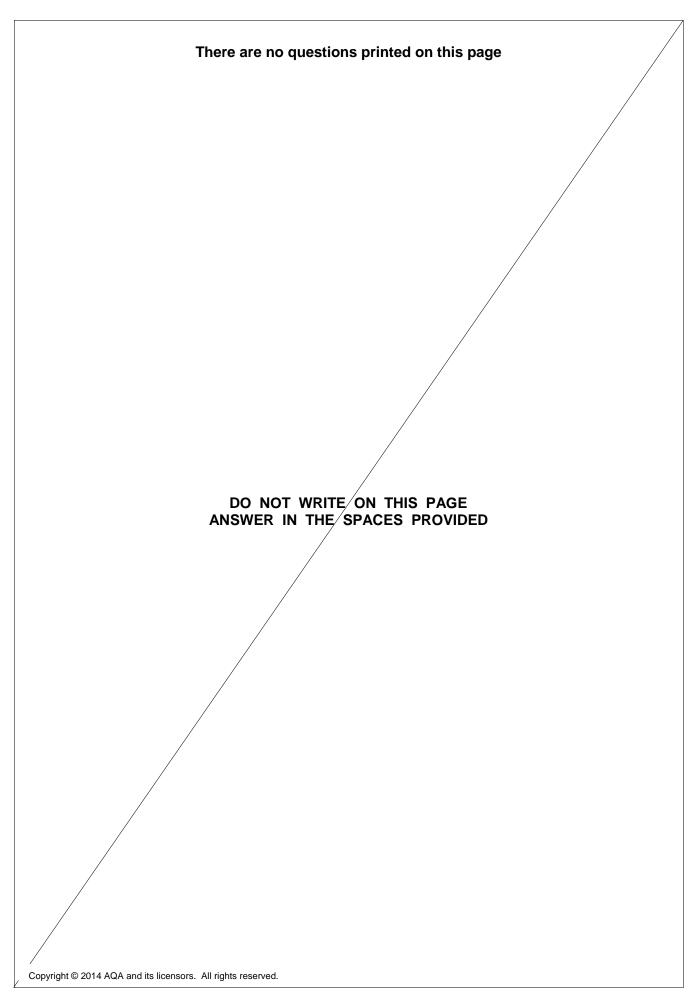
07.3	Justify your choice of vanadium in Question 7.2 [1 mark]
0 7 . 4	An acidified solution of NH_4VO_3 reacts with zinc.
	Explain how observations from this reaction show that vanadium exists in at least two different oxidation states. [2 marks]
	Question 7 continues on the next page

07.5	The vanadium in 50.0 cm ³ of a 0.800 mol dm ^{-3} solution of NH ₄ VO ₃ reacts with 506 cm ³ of sulfur(IV) oxide gas measured at 20.0 °C and 98.0 kPa.
	Use this information to calculate the oxidation state of the vanadium in the solution after the reduction reaction with sulfur(IV) oxide. Explain your working. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.
	[6 marks]
	Oxidation state =
Barcodo	

08.1	A co-ordinate bond is formed when a transition metal ion reacts with a ligand.
	Explain how this co-ordinate bond is formed.
	[2 marks]
	Describe what you would observe when dilute aqueous ammonia is added dropwise, to excess, to an aqueous solution containing copper(II) ions.
	Write equations for the reactions that occur. [4 marks]

08.3	When the complex ion $[Cu(NH_3)_4(H_2O)_2]^{2+}$ reacts with 1,2-diaminoethane, the ammonia molecules but not the water molecules are replaced.
	Write an equation for this reaction. [1 mark]
08.4	Suggest why the enthalpy change for the reaction in Question 8.3 is approximately
	[2 marks]
	Explain why the reaction in Question 8.3 occurs despite having an enthalpy change
0 8 . 5	Explain why the reaction in Question 8.3 occurs despite having an enthalpy change that is approximately zero. [2 marks]
	Turn over for the next question

9	A 5.00 g sample of potassium chloride was added to 50.0 g of water initially at 20.0 °C. The mixture was stirred and as the potassium chloride dissolved, the temperature of the solution decreased.
09.1	Describe the steps you would take to determine an accurate minimum temperature that is not influenced by heat from the surroundings. [4 marks]
09.2	The temperature of the water decreased to 14.6 °C. Calculate a value, in kJ mol ⁻¹ , for the enthalpy of solution of potassium chloride.
	You should assume that only the 50.0 g of water changes in temperature and that the specific heat capacity of water is $4.18 \text{ J K}^{-1} \text{ g}^{-1}$. Give your answer to the appropriate number of significant figures. [4 marks]
	Enthalpy of solution =kJ mol ⁻¹


Typesetter code

The enthalpy of solution of calcium chloride is -82.9 kJ mol ⁻¹ . The enthalpies of hydration for calcium ions and chloride ions are -1650 and -364 kJ mol ⁻¹ , respectively. Use these values to calculate a value for the lattice enthalpy of dissociation of calcium chloride. [2 marks]
Lattice enthalpy of dissociation =kJ mol ⁻¹ Explain why your answer to Question 9.3 is different from the lattice enthalpy of dissociation for magnesium chloride. [2 marks]

Г

BaCl ₂ + HCl AgNO ₃ + HNO ₃ NaOH Na ₂ CO ₃ HCl (conc) Q no change pale cream white white no change precipitate precipitate precipitate precipitate no change R no change white white white white precipitate S white no change white precipitate precipitate no change S white no change white precipitate precipitate no change S white no change brown precipitate precipitate yellow S white no change brown precipitate yellow S white no change brown <t< th=""><th>HCI HNO3 Nator Na2CO3 HCI (conc) Q no change observed pale cream precipitate white precipitate white precipitate no change observed R no change observed white precipitate white precipitate white precipitate, dissolves in excess of NaOH white precipitate, bubbles of a gas no change observed S white precipitate no change observed brown precipitate brown precipitate, bubbles of a gas yellow solution 1 Identify each of compounds Q, R and S. You are not required to explain your answers. [6 m Identity of Q </th><th></th><th></th><th>Table 5</th><th>5</th><th></th><th></th></t<>	HCI HNO3 Nator Na2CO3 HCI (conc) Q no change observed pale cream precipitate white precipitate white precipitate no change observed R no change observed white precipitate white precipitate white precipitate, dissolves in excess of NaOH white precipitate, bubbles of a gas no change observed S white precipitate no change observed brown precipitate brown precipitate, bubbles of a gas yellow solution 1 Identify each of compounds Q, R and S. You are not required to explain your answers. [6 m Identity of Q			Table 5	5		
Q no change observed pale cream precipitate white precipitate white precipitate R no change observed white precipitate white precipitate white precipitate, dissolves in excess of NaOH white precipitate, bubbles of a gas no change observed S white precipitate no change observed brown precipitate brown precipitate yellow solution 1 Identify each of compounds Q, R and S. You are not required to explain your answers. [6 n] Identity of Q [6 n]	Q no change observed pale cream precipitate white precipitate white precipitate R no change observed white precipitate white precipitate, dissolves in excess of NaOH white precipitate, bubbles of a gas no change observed S white precipitate no change observed brown precipitate brown precipitate, bubbles of a gas yellow solution 1 Identify each of compounds Q, R and S. You are not required to explain your answers. [6 n Identity of Q				NaOH	Na ₂ CO ₃	HCI (conc)
R no change observed white precipitate precipitate, dissolves in excess of NaOH white precipitate, bubbles of a gas no change observed S white precipitate no change observed brown precipitate brown precipitate, bubbles of a gas yellow solution 1 Identify each of compounds Q, R and S. You are not required to explain your answers. [6 r Identity of Q	R no change observed white precipitate precipitate, dissolves in excess of NaOH white bubbles of a gas no change observed S white precipitate no change observed brown precipitate brown precipitate, bubbles of a gas yellow solution 1 Identify each of compounds Q, R and S. You are not required to explain your answers. [6 r Identity of Q	Q		•			
S white precipitate no change observed brown precipitate precipitate, bubbles of a gas yellow solution 1 Identify each of compounds Q, R and S. You are not required to explain your answers. [6 r Identity of Q	S white precipitate no change observed brown precipitate precipitate, bubbles of a gas yellow solution 1 Identify each of compounds Q, R and S. You are not required to explain your answers. [6 r Identity of Q	R			precipitate, dissolves in excess of	precipitate, bubbles of	
Identify each of compounds Q, R and S. You are not required to explain your answers. [6 r Identity of Q Identity of R	Identify each of compounds Q, R and S. You are not required to explain your answers. [6 r Identity of Q Identity of R	s			brown	precipitate, bubbles of	
Identity of S	Identity of S						
			R S s tity of Q atity of R	HCI Q no change observed R no change observed S white precipitate notify each of compound are not required to e output to e notify of Q	HCI HNO3 Q no change observed pale cream precipitate R no change observed white precipitate S white precipitate no change observed Image: S white precipitate no change observed	HCI HNO3 Nach Q no change observed pale cream precipitate white precipitate R no change observed white precipitate white precipitate S white precipitate brown precipitate S white precipitate brown precipitate https://white precipitate no change observed brown precipitate https://white precipitate no change observed brown precipitate http://white precipitate no change observed brown precipitate	HCI HNO3 Naon Na2cO3 Q no change observed pale cream precipitate white precipitate white precipitate R no change observed white precipitate white precipitate white precipitate, dissolves in excess of NaOH white precipitate, bubbles of a gas S white precipitate no change observed brown precipitate brown precipitate, bubbles of a gas htify each of compounds Q, R and S. are not required to explain your answers. a gas

10.2	Write ionic equations for each of the positive observations with S .	[4 marks]
-		
	END OF QUESTIONS	

