Mathematics (MEI)

Advanced GCE 4762

Mechanics 2

Mark Scheme for June 2010

Q 1		mark		sub
(i)	For P $\begin{aligned} & 200 \times 5+250=200 v_{\mathrm{p}} \\ & v_{\mathrm{P}}=6.25 \text { so } 6.25 \mathbf{i} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ For Q $\begin{aligned} & 250 \times 5-250=250 v_{\mathrm{Q}} \\ & v_{\mathrm{Q}}=4 \text { so } 4 \mathbf{i} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Award for I-M Accept no i and no units Must have impulse in opposite sense Must indicate direction. Accept no units.	4
(ii)	i direction positive PCLM: $2250=200 \times 4.5+250 w_{\mathrm{Q}}$ $w_{\mathrm{Q}}=5.4 \text { so } 5.4 \mathrm{i} \mathrm{~m} \mathrm{~s}^{-1}$ NEL: $\frac{w_{\mathrm{Q}}-4.5}{4-6.25}=-e$ $e=0.4$	M1 F1 E1 M1 A1 A1	PCLM used. Allow error in LHS FT from (i) Any form. FT only from (i) NEL . Allow sign errors Signs correct. FT only from (i) cao	6
(iii)	i direction positive Suppose absolute vel of object is $-V \mathbf{i}$ $200 \times 4.5=-20 V+180 \times 5.5$ $V=4.5$ speed of separation is $5.5+4.5=10 \mathrm{~m} \mathrm{~s}^{-1}$	M1 B1 A1 A1 F1	Applying PCLM. All terms present. Allow sign errors. Correct masses All correct (including signs) FT their V.	5
(iv)	$\begin{aligned} & 180 \times 5.5+250 \times 5.4=430 W \\ & W=5.4418 \ldots \text { so } 5.44 \mathrm{i} \mathrm{~m} \mathrm{~s}^{-1}(3 \mathrm{s.} \mathrm{f.}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Using correct masses and velocities cao	2
				17

Q 2		mark		sub
(i)	$20\binom{\bar{x}}{\bar{y}}=15\binom{20}{0}+3\binom{0}{100}+2\binom{25}{200}$ $\begin{aligned} & \bar{x}=17.5 \\ & \bar{y}=35 \end{aligned}$	M1 B1 A1 A1 A1	Method to obtain at least 1 coordinate '100' or '25' correct Either one RHS term correct or one component of two RHS terms correct	5
(ii)	$\begin{aligned} & 25\binom{\bar{x}}{\bar{y}}=\binom{350}{700}+5\binom{40}{200} \\ & \text { so } \bar{x}=22, \bar{y}=68 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	Using (i) or starting again Clearly shown.	2
(iii)	We need the edge that the \bar{x} position is nearest $\bar{x}=22$; distances are 22 to $\mathrm{PQ}, 18$ to SR 15 to QR so edge QR	M1 B1 B1 A1	This may be implied One distance correct All distances correct	4
(iv)	Moments about RS In sense $x \mathrm{O} y$ $T \sin 50 \times 200-T \cos 50 \times 40$ $\begin{aligned} & -20 g \times(40-17.5)=0 \\ & T=34.5889 \ldots \text { so } 34.6 \mathrm{~N}(3 \text { s. f. }) \end{aligned}$	M1 B1 M1 A1 B1 A1 A1	Moments about RS attempted Use of weight not mass below. FT mass from here Attempt to find moment of T about RS, including attempt at resolution. May try to find perp dist from G to line of action of the force. 40-17.5 All correct allowing sign errors cao (except for use of mass)	7
				18

Q 3		mark		sub
(i)	a.c. moments about A $1 \times T-2 \times 300=0 \text { so } T=600$ Resolving $\begin{aligned} & \rightarrow X=0 \\ & \uparrow T-Y=300 \\ & \text { so } Y=300 \end{aligned}$	E1 B1 M1 A1	Justified	4
(ii)	Diagram The working below sets all internal forces as tensions; candidates need not do this.	B1 B1	All external forces marked consistent with (i) All internal forces with arrows and labels	2
(iii)	Let angle DAB be θ. $\cos \theta=\frac{1}{2}, \sin \theta=\frac{\sqrt{3}}{2}$ A $\uparrow-300-T_{\mathrm{AB}} \sin \theta=0$ so $T_{\mathrm{AB}}=-200 \sqrt{3}$ so force is $200 \sqrt{3}$ (C) $\mathrm{A} \rightarrow T_{\mathrm{AD}}+T_{\mathrm{AB}} \cos \theta=0$ so $T_{\mathrm{AD}}=100 \sqrt{3}$ so force is $100 \sqrt{3}$ C $\uparrow T_{\mathrm{CD}} \sin \theta-300=0$ so $T_{\mathrm{CD}}=200 \sqrt{3}$ so force is $200 \sqrt{3}$ $\mathrm{C} \leftarrow T_{\mathrm{BC}}+T_{\mathrm{CD}} \cos \theta=0$ so $T_{\mathrm{BC}}=-100 \sqrt{3}$ so force is $100 \sqrt{3}$ B $\uparrow T_{\mathrm{AB}} \sin \theta+T_{\mathrm{BD}}=0$ so $T_{\mathrm{BD}}=300$ so force is $300(\mathrm{~T})$	B1 M1 M1 A1 F1 F1 F1 F1 F1	Or equivalent seen Attempt at equilibrium at pin-joints 1 equilib correct, allowing sign errors All T/C consistent with their calculations and diagrams	9
(iv)	AD, AB, BC, CD $300 \mathrm{~N}, X$ and Y not changed. Equilibrium equations at A and C are not altered B $\uparrow T_{\mathrm{AB}} \sin \theta+T_{\mathrm{BD}}^{\prime}+600=0$ so $T^{\prime}{ }_{\mathrm{BD}}=-300$ so force is 300 (C)	B1 E1 M1 A1	C not needed. [If 300 N (C) given WWW, award SC1 (NB it must be made clear that this is a compression)]	4
				19

Q 4		mark		sub
(i)	Let friction be $F \mathrm{~N}$ and normal reaction $R \mathrm{~N}$ $\begin{aligned} & F_{\max }=58 \cos 35 \\ & R=16 g+58 \sin 35 \end{aligned}$ $F_{\max }=\mu R$ so $\mu=0.249968 \ldots$ about 0.25	B1 M1 A1 M1 E1	Need not be explicit Both terms required.	5
(ii)	WD is $70 \cos 35 \times 3=210 \cos 35$ so $172.0219 \ldots=172 \mathrm{~J}$ (3 s . f.) Average power is WD/time so $34.4043 \ldots$... $=34.4 \mathrm{~W}$ (3 s. f.)	M1 A1 M1 A1	Use of $\mathrm{WD}=F d$. Accept $\cos 35$ omitted.	4
(iii)	Using the constant acceleration result $s=\frac{1}{2}(u+v) t$ with $s=3, u=0, v=1.5$ and $t=5$ we see that $3 \neq \frac{1}{2}(0+1.5) \times 5=3.75$	$\begin{array}{\|l} \text { M1 } \\ \text { E1 } \end{array}$	Attempt to substitute in suvat (sequence) Conclusion clear	2
(iv)	$\begin{aligned} & 172.0219 \ldots \\ & =\frac{1}{2} \times 16 \times 1.5^{2} \\ & +0.25 \times(16 g+70 \sin 35) \times 3 \\ & + \text { WD } \end{aligned}$ so WD by S is 6.30916... $\text { so } 6.31 \mathrm{~J} \text { (3 s. f.) }$	M1 M1 A1 M1 A1 A1 A1	Using W-E equn, allow 1 missing term KE term attempted correct Attempt at using new F in $F_{\max }=\mu R$ All correct cao	7
				18

