

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4751

Introduction to Advanced Mathematics (C1)

16 JANUARY 2006

Morning

1 hour 30 minutes

Additional materials:

Monday

8 page answer booklet Graph paper

MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- You are **not** permitted to use a calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.

WARNING

You are not allowed to use a calculator in this paper

Section A (36 marks)

1 n is a positive integer. Show that $n^2 + n$ is always even.

[2]

[2]

2

Fig. 2

Fig. 2 shows graphs A and B.

- (i) State the transformation which maps graph A onto graph B.
- (ii) The equation of graph A is y = f(x).

Which one of the following is the equation of graph B?

$$y = f(x) + 2$$
 $y = f(x) - 2$ $y = f(x + 2)$ $y = f(x - 2)$
 $y = 2f(x)$ $y = f(x + 3)$ $y = f(x - 3)$ $y = 3f(x)$ [2]

- 3 Find the binomial expansion of $(2+x)^4$, writing each term as simply as possible. [4]
- 4 Solve the inequality $\frac{3(2x+1)}{4} > -6$. [4]
- 5 Make C the subject of the formula $P = \frac{C}{C+4}$. [4]
- 6 When $x^3 + 3x + k$ is divided by x 1, the remainder is 6. Find the value of k. [3]

7

Fig. 7

The line AB has equation y = 4x - 5 and passes through the point B(2, 3), as shown in Fig. 7. The line BC is perpendicular to AB and cuts the x-axis at C. Find the equation of the line BC and the x-coordinate of C.

8 (i) Simplify $5\sqrt{8} + 4\sqrt{50}$. Express your answer in the form $a\sqrt{b}$, where a and b are integers and b is as small as possible. [2]

(ii) Express
$$\frac{\sqrt{3}}{6-\sqrt{3}}$$
 in the form $p+q\sqrt{3}$, where p and q are rational. [3]

9 (i) Find the range of values of k for which the equation $x^2 + 5x + k = 0$ has one or more real roots.

(ii) Solve the equation
$$4x^2 + 20x + 25 = 0$$
. [2]

Section B (36 marks)

10 A circle has equation $x^2 + y^2 = 45$.

(i) State the centre and radius of this circle. [2]

(ii) The circle intersects the line with equation x + y = 3 at two points, A and B. Find algebraically the coordinates of A and B.

Show that the distance AB is
$$\sqrt{162}$$
. [8]

4751 January 2006 [Turn over

- 11 (i) Write $x^2 7x + 6$ in the form $(x a)^2 + b$. [3]
 - (ii) State the coordinates of the minimum point on the graph of $y = x^2 7x + 6$. [2]
 - (iii) Find the coordinates of the points where the graph of $y = x^2 7x + 6$ crosses the axes and sketch the graph. [5]
 - (iv) Show that the graphs of $y = x^2 7x + 6$ and $y = x^2 3x + 4$ intersect only once. Find the x-coordinate of the point of intersection. [3]
- **12** (i) Sketch the graph of $y = x(x-3)^2$. [3]
 - (ii) Show that the equation $x(x-3)^2 = 2$ can be expressed as $x^3 6x^2 + 9x 2 = 0$. [2]
 - (iii) Show that x = 2 is one root of this equation and find the other two roots, expressing your answers in surd form.
 - Show the location of these roots on your sketch graph in part (i). [8]