

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE CHEMISTRY

Higher Tier Paper 1

Thursday 16 May 2019 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		

Answer all questions in the spaces provided.

0 1 This question is about the periodic table.

In the 19th century, some scientists tried to classify the elements by arranging them in order of their atomic weights.

Figure 1 shows the periodic table Mendeleev produced in 1869.

His periodic table was more widely accepted than previous versions.

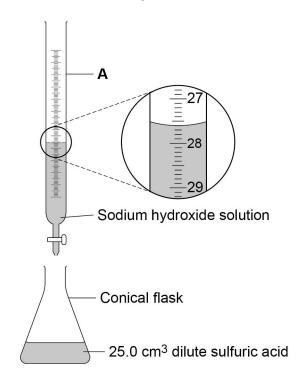
Figure 1

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1	Н						
Period 2	Li	Ве	В	С	N	0	F
Period 3	Na	Mg	Al	Si	Р	S	Cl
Period 4	K Cu	Ca Zn	*	Ti *	V As	Cr Se	Mn Br
Period 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	*

0 1.1	The atomic weight of tellurium (Te) is 128 and that of iodine (I) is 127	
	Why did Mendeleev reverse the order of these two elements?	[1 mark]

0 1.2	Mendeleev left spaces marked with an asterisk *	
	He left these spaces because he thought missing elements belonged	there.
	Why did Mendeleev's periodic table become more widely accepted the versions?	an previous
	versions?	[3 marks]
0 1.3	Mendeleev arranged the elements in order of their atomic weight.	
	What is the modern name for atomic weight?	[4 a w c]
	Tick (✓) one box.	[1 mark]
	Atomic number	
	Atomic number	
	Mass number	
	Relative atomic mass	
	Deletive fermoule made	
	Relative formula mass	
	Complete the sentence.	
0 1]. 4	Complete the sentence.	[1 mark]
	In the modern periodic table, the elements are arranged in order of	
		·

	Chlorine, iodine and astatine are in Group 7 of the modern periodic table.	
0 1.5	Astatine (At) is below iodine in Group 7.	
	Predict:	
	 the formula of an astatine molecule the state of astatine at room temperature. 	[2 marks]
	Formula of astatine molecule	
	State at room temperature	
0 1.6	Sodium is in Group 1 of the modern periodic table.	
	Describe what you would see when sodium reacts with chlorine.	[2 marks]


0 2	This question is about	acids and alkalis.	
0 2.1	Which ion do all acids	produce in aqueous solution?	[1 mark]
	Tick (✓) one box.		[i iliai k]
	H⁺		
	H ⁻		
	O ²⁻		
	OH ⁻		
0 2.2	Calcium hydroxide sol	ution reacts with an acid to form calcium chloride.	
	Complete the word eq	uation for the reaction.	[2 marks]
calcium hydro	oxide +	acid → calcium chloride +	
	Questi	on 2 continues on the next page	
	Questi	on 2 continues on the next page	
	Questi	on 2 continues on the next page	
	Questi	on 2 continues on the next page	
	Questi	on 2 continues on the next page	
	Questi	on 2 continues on the next page	
	Questi	on 2 continues on the next page	
	Questi	on 2 continues on the next page	
	Questi	on 2 continues on the next page	

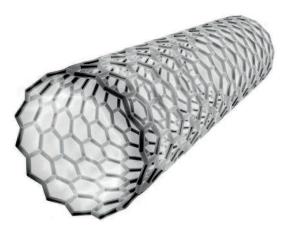
A student investigates the volume of sodium hydroxide solution that reacts with 25.0 cm³ of dilute sulfuric acid.

Figure 2 shows the apparatus the student uses.

Figure 2

Use Figure 2 to answer Questions 02.3 and 02.4

0 2.3	Name apparatus A .	[1 mark]
0 2.4	What is the reading on apparatus A ?	[1 mark]

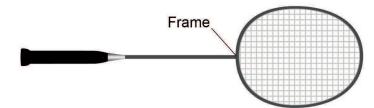


0 2 . 5	The higher the concentration of a sample of dilute sulfuric acid, the greater the volume of sodium hydroxide needed to neutralise the acid.
	The student tested two samples of dilute sulfuric acid, P and Q .
	Describe how the student could use titrations to find which sample, P or Q , is more concentrated.
	[6 marks]

- This question is about materials and their properties.
- 0 3 . 1 Figure 3 shows a carbon nanotube.

Figure 3

The structure and bonding in a carbon nanotube are similar to graphene.


Carbon nanotubes are used in electronics because they conduct electricity.

Explain why carbon nanotubes conduct electricity.

[2 marks]

0 3 . 2 Figure 4 shows a badminton racket.

Figure 4

Table 1 shows some properties of materials.

The materials could be used to make badminton racket frames.

Table 1

Material	Density in g/cm ³	Relative strength	Relative stiffness
Aluminium	2.7	0.3	69
Carbon nanotube	1.5	60	1000
Wood	0.71	0.1	10

Evaluate the use of the materials to make badminton racket frames.

Use Table 1 .	[4 marks]

	10
0 3.3	Zinc oxide can be produced as nanoparticles and as fine particles. A nanoparticle of zinc oxide is a cube of side 82 nm Figure 5 represents a nanoparticle of zinc oxide.
	Figure 5
	82 nm
	Calculate the surface area of a nanoparticle of zinc oxide.
	Give your answer in standard form. [3 marks]
	Surface area =nm²
0 3 . 4	Some suncreams contain zinc oxide as nanoparticles or as fine particles.
	Suggest one reason why it costs less to use paparaticles rather than fine particles in

Suggest **one** reason why it costs less to use nanoparticles rather than fine particles in suncreams.

[1 mark]

Do not write outside the box

0 4	This question is	s about atomic struc	This question is about atomic structure.			
0 4.1	Atoms contain subatomic particles.					
	Table 2 shows	properties of two su	ıbatomic particles			
	Complete Tabl	e 2.			[2 marks]	
			Table 2		[=]	
		Name of particle	Relative mass	Relative charge		
		neutron				
				+1		
	An element X h	nas two isotopes.				
	The isotopes h	ave different mass r	numbers.			
0 4.2	Define mass no	umber.			[1 mark]	
					[r mank]	
0 4.3	Why is the mas	ss number different i	n the two isotope:	s?	[4 mouls]	
					[1 mark]	
		Question 4 continu	ues on the next p	oage		

0 4.4	The model of the atom changed as new evidence was discovered.	
	The plum pudding model suggested that the atom was a ball of positive charge with electrons embedded in it.	
	Evidence from the alpha particle scattering experiment led to a change in the model of the atom from the plum pudding model.	
	Explain how.	
	[4 marks]	

0 5	This question is about ammonia, NH ₃
0 5 . 1	Complete the dot and cross diagram for the ammonia molecule shown in Figure 6 .
	Show only the electrons in the outer shell of each atom. [2 marks]
	Figure 6
	H N H
0 5.2	Give one limitation of using a dot and cross diagram to represent an ammonia molecule.
	[1 mark]
0 5.3	Explain why ammonia has a low boiling point.
	You should refer to structure and bonding in your answer. [3 marks]

Ammonia reacts with oxygen in the presence of a metal oxide catalyst to produce nitrogen and water.

0 5.

. 4

Which metal oxide is most likely to be a catalyst for this reaction?

[1 mark]

Tick (✓) one box.

CaO

Cr₂O₃

MgO

 Na_2O

Figure 7 shows the displayed formula equation for the reaction.

Figure 7

$$4H-N-H + 3O=O \longrightarrow 2N=N + 6H-O-H$$

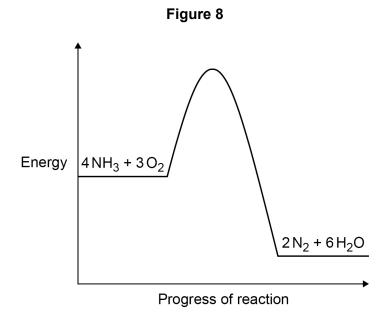
|
H

Table 3 shows some bond energies.

Table 3

Bond	N — Н	0=0	$N \equiv N$	0 — Н
Bond energy in kJ/mol	391	498	945	464

0 5 . 5	Calculate the overall energy change for the reaction.	
	Use Figure 7 and Table 3.	[3 marks]
	Overall energy change =	
0 5.6	Explain why the reaction between ammonia and oxygen is exothermic.	
	Use values from your calculation in Question 05.5	[2 marks]
	Question 5 continues on the next page	

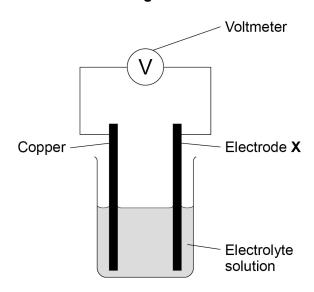

0 5 . 7

 $\textbf{Figure 8} \ \text{shows the reaction profile for the reaction between ammonia and oxygen}.$

Complete Figure 8 by labelling the:

- activation energy
- overall energy change.

[2 marks]


0 6

This question is about chemical cells.

A student investigated the voltage produced by different chemical cells.

Figure 9 shows the apparatus.

Figure 9

This is the method used.

- 1. Use cobalt as electrode X.
- 2. Record the cell voltage.
- 3. Repeat steps 1 and 2 using different metals as electrode X.

0 6 . 1 Suggest two control variables used in this investigation

[2]	ma	rks
-----	----	-----

2			

Table 4 shows the student's results.

Table 4

Electrode X	Voltage of cell in volts
cobalt	+0.62
copper	0.00
magnesium	+2.71
nickel	+0.59
silver	-0.46
tin	+0.48

0 6.2	Write the six metals used for electrode \boldsymbol{X} in order of reactivity.	
	Use Table 4 .	
	Justify your order of reactivity.	[4 marks]
	Most reactive	
	Least reactive	
	Justification	

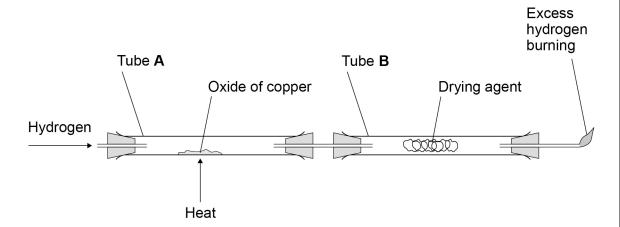
Do not write outside the box

0 6.3	Which of the following pairs of metals would produce the greatest voltage when used as the electrodes in the cell?	
	Use Table 4.	
	Tick (✓) one box.	
	Magnesium and cobalt	
	Magnesium and tin	
	Nickel and cobalt	
	Nickel and tin	
0 6.4	Hydrogen fuel cells can be used to power different forms of transport.	
	Some diesel trains are being converted to run on hydrogen fuel cells.	
	A newspaper article referred to the converted trains as the new 'steam trains'.	
	Suggest why. [2 marks]	
		Γ
		L


0 7	This question is about electrolysis.	
	Aluminium is produced by electrolysing a molten mixture of aluminium oxide ar cryolite.	nd
0 7.1	Explain why a mixture is used as the electrolyte instead of using only aluminium oxide.	
	[2	marks]
0 7 . 2	What happens at the negative electrode during the production of aluminium? [Tick (✓) one box.	1 mark]
	Aluminium atoms gain electrons.	
	Aluminium atoms lose electrons.	
	Aluminium ions gain electrons.	
	Aluminium ions lose electrons.	
0 7.3	Oxygen is produced at the positive electrode.	
	Complete the balanced half-equation for the process at the positive electrode. [2	marks]
	\rightarrow O_2 +	

0 7.4	Explain why the positive electrode must be continually replaced. [3 marks]
0 7.5	The overall equation for the electrolysis of aluminium oxide is:
	$2Al_2O_3 \rightarrow 4Al + 3O_2$
	Calculate the mass of oxygen produced when 2000 kg of aluminium oxide is completely electrolysed.
	Relative atomic masses (A_r): O = 16 Al = 27 [4 marks]
	Mass of ovvgon -
	Mass of oxygen = kg

	Sodium metal and chlorine gas are produced by the electrolysis of molten sodium chloride.	C
0 7.6	Explain why sodium chloride solution cannot be used as the electrolyte to produce sodium metal.	
	[2 marks]	
0 7.7	Calculate the volume of 150 kg of chlorine gas at room temperature and pressure.	
	The volume of one mole of any gas at room temperature and pressure is 24.0 dm ³	
	Relative formula mass (M_r) : $Cl_2 = 71$ [2 marks]	
	Volume = dm ³	Г
		L


0 8

Copper forms two oxides, Cu₂O and CuO

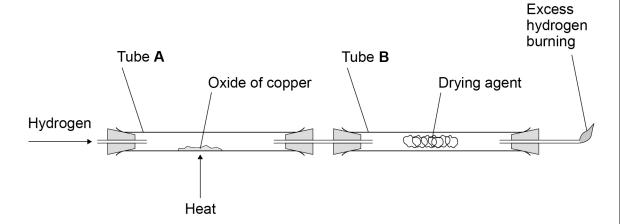
A teacher investigated an oxide of copper.

Figure 10 shows the apparatus.

Figure 10

This is the method used.

- 1. Weigh empty tube A.
- 2. Add some of the oxide of copper to tube A.
- 3. Weigh tube A and the oxide of copper.
- 4. Weigh tube **B** and drying agent.
- 5. Pass hydrogen through the apparatus and light the flame at the end.
- 6. Heat tube A for 2 minutes.
- Reweigh tube A and contents.
- 8. Repeat steps 5 to 7 until the mass no longer changes.
- 9. Reweigh tube **B** and contents.
- 10. Repeat steps 1 to 9 with different masses of the oxide of copper.


Do not write outside the box

0 8.1	Suggest one reason why step 8 is needed.	[1 mark]
0 8.2	Explain why the excess hydrogen must be burned off.	[2 marks]
	Question 8 continues on the next page	

Figure 10 is repeated here.

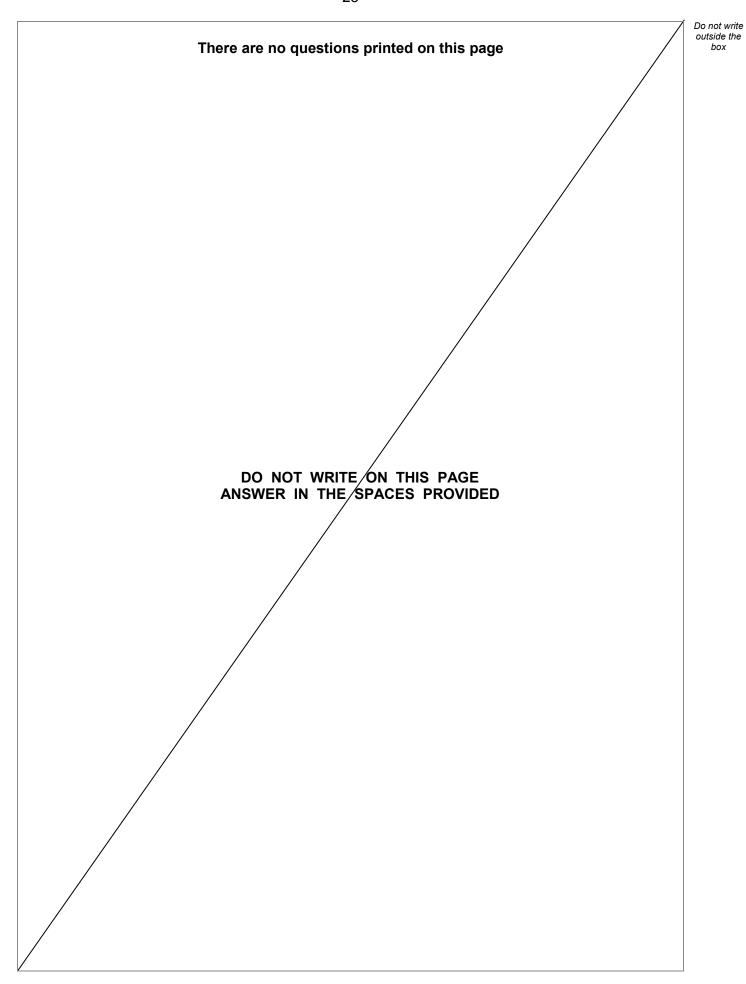
Figure 10

Table 5 shows the teacher's results.

Table 5

	Mass in g
Tube A empty	105.72
Tube A and oxide of copper before heating	115.47
Tube A and contents after 2 minutes	114.62
Tube A and contents after 4 minutes	114.38
Tube A and contents after 6 minutes	114.38
Tube B and contents at start	120.93
Tube B and contents at end	123.38

When an oxide of copper is heated in a stream of hydrogen, the word equation for the reaction is:



0 8 . 3	Determine the mass of copper and the mass of water produced in this experiment.
	Use Table 5 . [2 marks
	Mass of copper =
	Mass of water =
0 8 . 4	The teacher repeated the experiment with a different sample of the oxide of copper.
	The teacher found that the oxide of copper produced 2.54 g of copper and 0.72 g of water.
	Two possible equations for the reaction are:
	Equation 1: $Cu_2O + H_2 \rightarrow 2Cu + H_2O$
	Equation 2: $CuO + H_2 \rightarrow Cu + H_2O$
	Determine which is the correct equation for the reaction in the teacher's experiment.
	Relative atomic masses (A_r) : H = 1 O = 16 Cu = 63.5 [3 marks

Turn over for the next question

Turn over ►

0 9	A student investigated the temperature change in the reaction between dilute sulfuric acid and potassium hydroxide solution.	
	This is the method used.	
	1. Measure 25.0 cm³ potassium hydroxide solution into a polystyrene cup.	
	2. Record the temperature of the solution.	
	3. Add 2.0 cm ³ dilute sulfuric acid.	
	4. Stir the solution.	
	5. Record the temperature of the solution.	
	6. Repeat steps 3 to 5 until a total of 20.0 cm ³ dilute sulfuric acid has been added.	
0 9 . 1	Suggest why the student used a polystyrene cup rather than a glass beaker for the reaction. [2 marks]	
Question 9 continues on the next page		

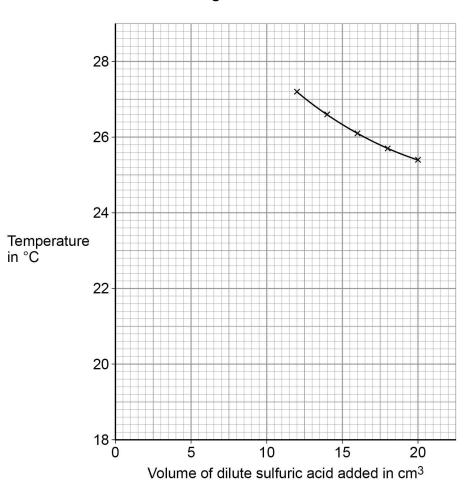

Table 6 shows some of the student's results.

Table 6

Volume of dilute sulfuric acid added in cm ³	Temperature in °C
0.0	18.9
2.0	21.7
4.0	23.6
6.0	25.0
8.0	26.1
10.0	27.1

Figure 11 shows some of the data from the investigation.

Figure 11

0 9.2	Complete Figure 11:	
	 plot the data from Table 6 draw a line of best fit through these points extend the lines of best fit until they cross. 	[4 marks]
0 9.3	Determine the volume of dilute sulfuric acid needed to react completely with 25.0 cm ³ of the potassium hydroxide solution.	
	Use Figure 11.	
		[1 mark]
	Volume of dilute sulfuric acid to react completely =	cm ³
0 9.4	Determine the overall temperature change when the reaction is complete.	
	Use Figure 11.	
		[1 mark]
	Overall temperature change =	°C
	Question 9 continues on the next page	

	Do not write outside the box
s]	

0 9 . 5	The student repeated the investigation.		
	The student used solutions that had different concentrations from the first investigation.		
	The student found that 15.5 cm³ of 0.500 mol/dm³ dilute sulfuric acid comple reacted with 25.0 cm³ of potassium hydroxide solution.	tely	
	The equation for the reaction is:		
	$2 \text{KOH} + \text{H}_2 \text{SO}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{H}_2 \text{O}$		
	Calculate the concentration of the potassium hydroxide solution in mol/dm³ ag/dm³		
	Relative atomic masses (A_r): H = 1 O = 16 K = 39	[6 marks]	
	Concentration in mol/dm ³ =	_ mol/dm ³	
	Concentration in g/dm ³ =	_g/dm³	

END OF QUESTIONS

Copyright information

For confidentiality purposes acknowledgements of third-party copyright material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series.

Copyright $\ensuremath{\texttt{@}}$ 2019 AQA and its licensors. All rights reserved.

IB/G/Jun19/8462/1H