

4733

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Probability & Statistics 2

MARK SCHEME

Specimen Paper

MAXIMUM MARK 72

$\overline{}$					
1	(i)	$\frac{12.0}{\sqrt{n}} = 1.50 \Rightarrow \sqrt{n} = \frac{12.0}{1.50} = 8 \Rightarrow n = 64$	B1		For any correct equation involving n
		V 5.60	M1 A1	3	For correct solution method for n or \sqrt{n} For correct answer 64
	(ii)	n is large, the distribution of \overline{F} can be taken to be normal, according to the Central Limit Theorem	M1 A1	2	For reference to the CLT
				5	
2	(i)	Reasons for bias may include: Larger properties more likely to be picked Some regions of the map more/less likely	B1 B1	2	For stating one valid relevant reason For stating a second valid relevant reason
	(ii)	Make a list of all the houses in the neighbourhood Number the houses from 1 upwards Select the sample using random numbers	B1 B1 B1	3	For stating or implying a sampling frame For numbering the sampling units For referring to use of random numbers
				5	
3	(i)	1/36	B1	1	For correct probability
	(ii)	Number obtaining two sixes $\sim B(60, \frac{1}{36})$	M1		For stating or implying binomial distribution
		Approximate distribution is $Po(\frac{5}{3})$	A1√		For the correct Poisson approximation
		$P(\geqslant 4) = 1 - e^{-\frac{5}{3}} \left\{ 1 + \frac{5}{3} + \frac{(5/3)^2}{2!} + \frac{(5/3)^3}{3!} \right\}$	M1		For calculation of correct terms
		= 0.0883	M1 A1	5	For correct use of Poisson formula For correct answer 0.088(3)
				6	
4	(i)	(a) $\frac{15.0 - 20.0}{\sigma} = -0.253$	M1		For standardising and equating to $\Phi^{-1}(p)$
		_	B1		For correct value 0.253 (or 0.254) seen
		Hence $\sigma = \frac{5}{0.253} \approx 19.8$	M1		For solving equation for σ
			A1	4	For correct value 19.8
		(b) $g = 25.0$, using symmetry $(50.0 - 20.0)$	B1		For stating (or finding) the value of <i>g</i>
		Hence $P(G > 2g) = 1 - \Phi\left(\frac{50.0 - 20.0}{19.8}\right)$	M1		For correct process for upper tail prob
		=1-0.935 = 0.065	A1	3	
	(ii)	If normal, $P(G < 0)$ is substantial Hence the assumption seems unjustified	M1 A1	2	For considering relevant normal probability For stating the appropriate conclusion
				9	

5		20	= 81.4	B1		For correct value of sample mean
	$s^2 =$	$\frac{3361}{49}$	$\frac{00}{49 \times 50} = 98$	M1		For calculation of unbiased or biased estimate
	H ₀ :	$\mu = 8$	4.0; $H_1: \mu < 84.0$	A1 B1		For correct value of unbiased estimate For correct statement of null hypothesis
				В1		For correct statement of alt hypothesis
	EITH	IER:	$z = \frac{\overline{x} - 84.0}{\sqrt{(s^2/50)}} = -1.857$	M1		For standardising, including use of $\sqrt{50}$
		,	This is significant, since $-1.857 < -1.645$	A1 M1		For correct value 1.857 For comparing z value to -1.645 or equiv
	OR:		$\frac{c - 84.0}{\sqrt{(s^2/50)}} = -1.645 \Rightarrow c = 81.697$	M1		For critical value calculation, inc use of $\sqrt{50}$
			\overline{x} is in the critical region since 81.4 < 81.697	A1 M1		For correct value 81.697 For comparing sample mean to critical region
		-	is rejected	A1√		For stating or implying rejection of H_0
			afficient evidence to conclude that the mean rating is less than 84.0	A1√	10	For stating the outcome in context
					10	
6	(i)	(a)	For one day, the distribution is $Po(0.5)$	B1		For use of correct Poisson mean
			Hence P(exactly 2) = $0.9856 - 0.9098$	M1		For relevant use of tables (or formula)
			= 0.0758	A1	3	For correct answer 0.0758
		(b)	No. of days with no cars ~ B(365, 0.6065)	M1		For relevant Poisson probability of P(0)
				A1		For identifying correct binomial distribution
			Normal approximation is N(221.3725, 87.11)	A1√		For correct use of np and npq
			$P(<205) = P\left(Z < \frac{204.5 - 221.3725}{\sqrt{87.11}}\right)$	M1		For standardising (with or without c.c. here)
			$=\Phi(-1.808)=0.0353$	A1 A1	6	For completely correct expression For correct answer 0.0353
	(ii)	a cor	ts (cars running out of petrol) must occur at astant average rate. This seems unlikely, given	B1		For correct statement of the condition
		diffe	here will be different volumes of traffic on rent days of the week (e.g. weekdays and tends)	B1	2	For a correct explanation
					11	

4733 Specimen Paper [Turn over

7	(i)	$1 = k \int_0^3 (9x - x^3) dx = k \left[\frac{9}{2} x^2 - \frac{1}{4} x^4 \right]_0^3 = \frac{81}{4} k$	M1		For equating to 1 and integrating
		Hence $k = \frac{4}{81}$	A1	2	For showing given answer correctly
	(ii)	$E(X) = \frac{4}{81} \int_0^3 x^2 (9 - x^2) dx = \frac{4}{81} \left[3x^3 - \frac{1}{5}x^5 \right]_0^3 = 1.6$	M1		For attempt at $\int_0^3 x f(x) dx$
			A1 A1	3	For correct indefinite integral, in any form For correct answer 1.6
	(iii)	(a) $\frac{3}{5} = \frac{4}{81} \int_0^y x(9 - x^2) dx = \frac{4}{81} \left[\frac{9}{2} x^2 - \frac{1}{4} x^4 \right]_0^y$	M1		For attempt at $\int_0^y f(x) dx = \frac{3}{5}$
		Hence $\frac{3}{5} = \frac{4}{81} \left\{ \frac{9}{2} y^2 - \frac{1}{4} y^4 \right\}$	B1 M1		For correct indefinite integral, in any form Use limits to produce relevant equation in y
		i.e. $5y^4 - 90y^2 + 243 = 0$	A1	4	For showing given answer correctly
		(b) $w = \frac{90 \pm \sqrt{(90^2 - 4 \times 5 \times 243)}}{10} = 3.31 \text{ or } 14.7$	M1		For use of quadratic formula to find w
		Hence $y = \sqrt{3.31} = 1.82$	A1 A1	3	For either value found correctly For correct (unique) answer 1.82
				12	
8	(i)	$H_0: p = 0.15; H_1: p > 0.15$	B1		For correct statement of null hypothesis
	,		B1		For correct statement of alt hypothesis
		Under H_0 , number left-handed $L \sim B(12, 0.15)$ $P(L \ge 5) = 1 - 0.9761 = 0.0239$	M1 M1		For correct distribution stated or implied For calculation of relevant tail probability, or
		,			finding the critical region
		This is significant, since 0.0239 < 0.05	A1 M1		For correct value 0.0239 or region $l \ge 5$ For comparing tail probability with 0.05 or
		Hence H ₀ is rejected	A1√		observed value with critical region For stating or implying rejection of H ₀
		Accept the suggestion that the proportion of mathematicians who are left-handed is more than 15%	A1√	8	For stating the outcome in context
		$P_{\rm I} = P(L \text{ in critical region}) = 0.0239$	M1		For evaluating P(reject H ₀)
	(11)	T ₁ = T(2 in critical region) = 0.0237	A1	2	For correct answer 0.0239 or equivalent
	(iii)	$P_{II} = P(L \le 4 \mid p = 0.2) = 0.9274$	M1 A1	,	For evaluating P(accept H_0) with $p = 0.2$ For correct probability
	(iv)	$P_{II} = 0.0188$ for $p = \frac{2}{3}$ and 0.0095 for $p = 0.7$	M1		For relevant use of tables
	(17)	So the proportion is between 67% and 70%	A1	2	For an appropriate conclusion
				14	