4724 Core Mathematics 4

1	(a)	$2x^2 - 7x - 4 = (2x+1)(x-4)$ or		
		$3x^2 + x - 2 = (3x - 2)(x + 1)$	B 1	
		$\frac{2x+1}{3x-2}$ as final answer; this answer only	B1	Do not ISW
	(b)	For correct leading term x in quotient For evidence of correct division process Quotient = $x - 2$ Remainder = $x - 3$	B1 M1 A1 A1 4	Identity method M1: $x^3 + 2x^2 - 6x - 5 = Q(x^2 + 4x + 1) + R$ M1: $Q = ax + b$ or $x + b$, $R = cx + d$ & ≥ 2 ops [N.B. If $Q = x + b$, this \Rightarrow 1 of the 2 ops] A2: $a = 1, b = -2, c = 1, d = -3$ SR: <u>B</u> 1 for two
2		Parts with correct split of $u = \ln x$, $\frac{dv}{dx} = x^4$ $\frac{x^5}{5} \ln x - \int \frac{x^5}{5} \cdot \frac{1}{x} (dx)$	*M1 A1	obtaining result $f(x) + /-\int g(x) dx$
		$\frac{5}{5} = \int \frac{5}{5} x^{5} + \frac{1}{25}$ Correct method with the limits $\frac{4e^{5}}{25} + \frac{1}{25} = ISW \qquad (Not '+c')$	A1 dep*I A1	M1 Decimals acceptable here Accept equiv fracts; like terms amalgamated
		25 25 25 (100 0)	5	recept equit rivers, and terms analyzing a
3	(i)	$\frac{d}{dx}(x^2y) = x^2\frac{dy}{dx} + 2xy \text{ or } \frac{d}{dx}(xy^2) = 2xy\frac{dy}{dx} + y^2$	*B1	
		Attempt to solve their differentiated equation for $\frac{dy}{dx}$	dep*I	M1
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 - 2xy}{x^2 - 2xy} \text{ only}$	A1	WWW AG Must have intermediate line & could imply "=0" on 1 st line
			3	
	(ii)(a	A)Attempt to solve only $y^2 - 2xy = 0$ & derive $y = 2x$ Clear indication why $y = 0$ is not acceptable	B1 B1 2	AG Any effort at solving $x^2 - 2xy = 0 \rightarrow B0$ Substituting $y = 2x \rightarrow B0, B0$
	(b)	Attempt to solve $y = 2x$ simult with $x^2y - xy^2 = 2$ Produce $-2x^3 = 2$ or $y^3 = -8$ (-1, -2) or $x = -1, y = -2$ only	M1 A1 A1 3	AEF

Mark Scheme

4	(i)	For (either point) + t (difference between vectors) $\mathbf{r} = (3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \text{ or } \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) + t(-2\mathbf{i} + \mathbf{j} + \mathbf{k} \text{ or } 2\mathbf{i} - \mathbf{j} - \mathbf{j})$	k) A	11 't' can be 's', ' λ ' etc. 11 'r' must be 'r' but need not be bold Check other formats, e.g. $ta + (1-t)b$ 2
	(ii)		°p*M	N.B.This *M1 is dep on M1 being earned in (i) 11
		$\begin{array}{cccc} 6 & 6 & 6 \\ \text{Subst their } t \text{ into their equation of } AB \end{array} \qquad \mathbf{M}$	1	
		Obtain $\frac{1}{6}(16\mathbf{i} + 13\mathbf{j} + 19\mathbf{k})$ AEF A		Accept decimals if clear
		5	5	
5	(i)	$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2$ ignoring x^3 etc	B	SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq -\frac{1}{8}$ or 0
		$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2$ ignoring x^3 etc	B	SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq \frac{3}{8}$ or 0
		Product = $1 - x + \frac{1}{2}x^2$ ignoring x^3 etc	B	
		[= [=		5
	(ii)	$\sqrt{\frac{5}{9}}$ or $\frac{\sqrt{5}}{3}$ seen	B	31
		$\frac{37}{49}$ or $1 - \frac{2}{7} + \frac{1}{2} \left(\frac{2}{7}\right)^2$ seen	В	31
		$\frac{\sqrt{5}}{3} \approx \frac{37}{49} \Longrightarrow \sqrt{5} \approx \frac{111}{49}$	B	B1 AG
				3
6	(i)	Produce at least 2 of the 3 relevant equations in t and s Solve for t and s (t, s) = (4, -3) AEF	N	$\overline{11} 1 + 2t = 12 + s, \ 3t = -4s, \ -5 + 4t = 5 - 2s$ $\overline{11}$ $A1$
		Subst $(4, -3)$ into suitable equation(s) & show consistence		ep*A1 Either into "3 rd " eqn or into all 3 coordinates.
			Г	N.B. Intersection coords not asked for 4
	(ii)	Method for finding magnitude of any vector		M1 Expect $\sqrt{29}$ and $\sqrt{21}$
	. /	Method for finding scalar product of any 2 vectors		M1 Expect -18
		Using $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$ AEF for the correct 2 vectors	de	ep*M1 Should be $-\frac{18}{\sqrt{29}\sqrt{21}}$
		137 (136.8359) or 43.2(43.164)	A	2.39 (2.388236) or 0.753(0.75335) rads

7	(i)	Correct (calc) method for dealing with $\frac{1}{\sin x}$ or $(\sin x)^{-1}$	M1	
		Obtain $-\frac{\cos x}{\sin^2 x}$ or $-(\sin x)^{-2} \cos x$	A1	
		Show manipulation to $-\operatorname{cosec} x \operatorname{cot} x$ (or vice-versa)	A1 3	WWW AG with \geq 1 line intermed working
	(ii)	Separate variables, $\int (-) \frac{1}{\sin x \tan x} dx = \int \cot t dt$	M1	or $\int \frac{1}{\sin x \tan x} dx = \int (-) \cot t dt$
		Style: For the M1 to be awarded, dx and dt must appear of	on corr	ect sides or there must be $\int sign on both sides$
		$\int -\csc x \cot x dx = \csc x (+c)$	A1	or $\int \operatorname{cosec} x \operatorname{cot} x \mathrm{d}x = -\operatorname{cosec} x$
		$\int \cot t dt = \ln \sin t \ \text{or} \ \ln \left \sin t \right \tag{+c}$	B 1	or $\int -\cot t dt = -\ln \sin t$ or $-\ln \sin t $
		Subst $(t, x) = \left(\frac{1}{2}\pi, \frac{1}{6}\pi\right)$ into their equation containing 'c'	M1	and attempt to find 'c'
		$\operatorname{cosec} x = \ln \sin t + 2$ or $\ln \sin t + 2$	A1	WWW ISW; cosec $\frac{\pi}{6}$ to be changed to 2
	(1)		5	
8	(i)	A(t+1) + B = 2t $A = 2$	M1 A1	<u>Beware</u> : correct values for <i>A</i> and/or <i>B</i> can be obtained from a wrong identity
		B = -2	A1	<u>Alt method:</u> subst suitable values into given
			3	expressions
	(ii)	Attempt to connect dx and dt dx = t dt s.o.i. AEF	M1 A1	But not just $dx = dt$. As AG, look carefully.
		$x + \sqrt{2x - 1} \rightarrow \frac{t^2 + 1}{2} + t = \frac{(t + 1)^2}{2}$ s.o.i.	B1	Any wrong working invalidates
		$\int \frac{2t}{\left(t+1\right)^2} \mathrm{d}t$	A1	AG WWW The 'dt' must be present
			4	
	(iii)	$\int \frac{1}{t+1} \mathrm{d}t = \ln(t+1)$	B1	Or parts $u = 2t$, $dv = (t+1)^{-2}$ or subst $u = t+1$
		$\int \frac{1}{(t+1)^2} \mathrm{d}t = -\frac{1}{t+1}$	B 1	
		Attempt to change limits (expect 1 & 3) and use $f(t)$	M1	or re-substitute and use 1 and 5 on $g(x)$
		$\ln 4 - \frac{1}{2}$	A1	AEF (like terms amalgamated); if A0 A0 in (i),
_			4	then final A0

9	(i)	$A: \theta = \frac{1}{2}\pi (\text{accept } 90^\circ)$	B1	
		$B: \theta = 2\pi (\text{accept } 360^\circ)$	B2	SR If B0 awarded for point <i>B</i> , allow B1 SR for
			3	any angle s.t. $\sin \theta = 0$
	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}$	M1	or $\frac{dy}{d\theta} \cdot \frac{d\theta}{dx}$ Must be used, not just quoted
		$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2 + 2\cos 2\theta$	B1	
		$2 + 2\cos 2\theta = 4\cos^2 \theta$ with ≥ 1 line intermed work	*B1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\cos\theta}{2+2\cos2\theta} \qquad \text{s.o.i.}$	A1	This & previous line are interchangeable
		$= \sec \theta$	dep*A	1 WWW AG
	(iii)	Equating sec $\theta \ $ to 2 and producing at least one value of θ		degrees or radians
		$(x =) -\frac{2}{3}\pi - \frac{\sqrt{3}}{2}$ (y =) - 2\sqrt{3}	A1	'Exact' form required
		$(y=)-2\sqrt{3}$	A1 3	'Exact' form required