CHEMISTRY A LEVEL PAPER 2 MARK SCHEME

Question Number	Answer	Additional Guidance	Mark
1(a)(i)	A		1
1(a)(ii)	D		1
1(b)	A description that makes reference to:		3
	 (head on) overlap between orbitals from neighbouring carbon atoms to form a sigma bond (1) 	Allow sp ² hybrid orbitals overlap to form a sigma bond	
	• (the remaining) p orbitals overlap sideways (1)		
	• and so electrons delocalise (around the ring) (1)		
	Example of a possible diagram scoring 2 marks (marking points 2 and 3)		
	c c c c overlap of p orbitals		

Question Number	Answer	Additional Guidance	Mark
2(a)	A		1
2(b)	С		1
2(c)	D		1

(Total Question 2 = 3 marks)

Number			
3(a)	reacts with acids to form a salt/proton acceptor	(1) Allow electron pair donor	1
3(b)	В		1
β(c)	 Any two of the following points: the nucleophile does not have an unpaired electro it has a lone pair of electrons the slightly positive carbon is not attached to an electropositive chlorine atom, it is attached to an electronegative chlorine atom the product is not an amide, it is a (secondary) amine 	n, (1) (1)	2

Question Number	Answer	Additional Guidance	Mark
4(a)	С		1
4(b)	Prediction: 7/neutral (1)	Allow 6.5 to 7.5	2
	 Justification: Amino group accepts one proton released from acid / B exists as a zwitterion (so it is not acidic or alkaline) 	Allow proton from acid accepted by amine	
4(c)	An answer that makes reference to the following points:		4
	• pentane has the lowest melting temperature because it only has London forces (1)	Accept van der Waals as alternative to London	
	 butan-1-ol and glycine have (similar) London forces (due to similar number of electrons) (1) 	If marking points 2 and 3 are not scored then allow 1 mark for the idea that butan-1-ol has higher melting temperature (than pentane) due	
	 butan-1-ol has higher / less negative melting temperature than pentane as it has hydrogen bonds (1) 	to stronger intermolecular forces	
	 glycine has the highest melting temperature as it is an ionic solid (lattice) / consists of zwitterions (1) 		
		(Total Question 4 =	7 marks)

Question Number	Answer		Additional Guidance	Mark
5(a)(i)	С			1
5(a)(ii)	С			1
5(b)(i)	 amount of sodium thiosulfate amount of liberated iodine 	(1)	Example of calculation Amount of sodium thiosulfate $= 21.2(1000 \times 0.500 = 0.0106 \text{ (mol)})$	2
		(1)	Amount of liberated iodine = $0.0106/2$ = $5.3 \times 10^{-3} / 0.0053$ (mol)	
			Allow ecf from 1st to 2nd mark	
			Correct answer with no working scores 2 marks	
5(b)(ii)	initial amount of ICI	(1)	Allow ecf from (b)(i)	5
	 amount of ICI that reacted with oil 	(1)	If no subtraction allow 3 max (1st, 4th and 5th marks)	
	mass of iodine in ICI	(1)	Example of calculation	
	expression for iodine value	(1)	Initial amount of ICl = $11.0 / 162.4$ = 0.067734 (mol)	
	final iodine value	(1)	Amount of ICl that reacted with oil = $0.067734 - 5.3 \times 10^{-3} = 0.062434$ (mol)	
			Mass of iodine in ICl = 0.062434×126.9 =7.9229s g (with 6.4 g oil)	
			Iodine value = 7.9229 x 100/6.4 = 123.79 / 124	
			Correct answer with no working scores 5 marks	
5(c)	A			1
- (-)	1		(Total Question 5 = 1	0 marks)

Question Number	Answer		Additional Guidance	Mark
6(a)	С			1
6(b)(i)	 Comparison of runs 1 and 2 to determine order wrt A = 1 	(1)	Allow comparisons of other relevant pairs of runs	2
	 Comparison of runs 1 and 3 to determine order wrt B = 2 	(1)		
6(b)(ii)	(When comparing runs 2 and 4)			2
	 [A] constant so no effect but [B] x 4 so increases by 16 / to 0.0768 	rate (1)	Allow comparisons of other relevant pairs of runs, e.g. runs 3 and 4	
	 [C] x 3 and rate increases by 0.23 ÷ 0.0768 (= i.e. 3), so first order with respect to C 	2.99 (1)		
6(b)(iii)	• rate = $k[A][B]^{2}[C]$	(1)		1
6(b)(iv)	rearrangement of rate expression	(1)	Example of calculation $k = rate / [A][B]^{2}[C]$	3
	• evaluation of value for k to 2.s.f	(1)	$= 7.324 = 7.3 \text{ dm}^9 \text{ mol}^{-3} \text{ s}^{-1}$	
	 units dm⁹ mol⁻³ s⁻¹ 	(1)	Allow ecf from b (iii)	
			Allow units in any order	
			Correct answer with no working and units to 2 sf scores 3 marks	

Question Number	Answer	Additional Guidance	Mark
6(c)(i)	• 2^{nd} order (1)		1
6(c)(ii)	An explanation that makes reference to the following points:		2
	 rate increases because increased concentration of propanone means more propanone molecules in a given volume (1) so more frequent collisions / greater rate of collision 	s	
	/ more collisions per second (1)		
6(d)(i)	An explanation that makes reference to the following points:	Responses in terms of heterogeneous catalysis can score a maximum of 2 marks	3
	 increases the rate of reaction because it lowers the activation energy (1) by providing alternative reaction mechanism 	 Reactants bond onto catalyst surface (adsorption) Increases concentration of reactant (at surface) 	
	/pathway (1)	 Products break away from catalyst surface (desorption) 	
	• so greater proportion of particles coulde with sufficient energy (1)	All 3 points scores 2 marks A combination of any 2 points scores 1 Any single point only scores 0 marks	

 6(d)(ii) one Maxwell-Boltzmann distribution shown drawn with appropriate shape (1) second distribution shown with maximum lower and to right of that shown by first curve, with larger area below curve beyond <i>E</i>_a (1) (to score 2nd mark there must be a clear indication that the 	Question Number	Answer	Additional Guidance	Mark
second distribution is at a higher temperature)	6(d)(ii)	 one Maxwell-Boltzmann distribution shown drawn with appropriate shape (1) second distribution shown with maximum lower and to right of that shown by first curve, with larger area below curve beyond <i>E</i>_a (1) (to score 2nd mark there must be a clear indication that the second distribution is at a higher temperature) 	Curves should not cross x- axis	2

(Total Question 6 = 17 marks)

Question Number	Answer		Additional Guidance	Mark
7(a)	 calculation of mass of C from CO₂ 	(1)	Example of calculation Mass of C = $4.26 \times 12/44 = 1.1618$ g	4
	 calculation of mass of H from H₂O 	(1)	Mass of H = 1.1 x 2/18 = 0.12222 g So mass O = 1.56 - (1.1618 + 0.1222)	
	 subtraction to find mass of O, and evaluation of number of moles of C, H and O 	(1)	= 0.27598 g	
	confirm whole number ratio	(1)	Moles C = $1.1618/12 = 0.096817$ Moles H = $0.12222/1 = 0.12222$ Moles O = $0.27598/16 = 0.017249$	
			Ratio = $5.6 : 7.1 : 1 = 11 : 14 : 2$	
			Allow alternative correct methods	
7(b)	4 (additional) peaks drawn	(1)	Peaks can be shown as separate lines	6
	 Splitting marks (ignore chemical shift at this poir (nt) 2)		
	 p, q and s are triplets and r is quartet scores 2 marks 			
	 two or three splitting patterns correctly showr scores 1 mark 	ו		
	 area under curve total shown by candidate = (2+2+2+3) = 9 	1)	Ignore whether values are linked to correct peak	
	 chemical shifts Peak at 0-2 ppm due to protons on s Peak at 2-3 ppm due to protons on r 	(2)	All peaks at correct chemical shift score 2 marks	
	 Peak at 3-4 ppm due to protons on q Peak at 1.6-2.8 ppm due to protons on p 		Two or three at correct chemical shift peaks score 1 mark	

Question Number	Answer	Additional Guidance	Mark
7(c)(i)	Α		1
7(c)(ii)	$\begin{array}{c} H_{2} \\ H_{2}C \\ H_{2}C$		4
	Η ΑΙCl ₃		
	• electron pair movement from ring to electrophile (1)		
	• formula of intermediate ion (1)		
	 movement of bond pair to reinstate delocalised ring (1) 	Can show H ⁺ ion forming and reacting with lone pair from oxygen	
	• movement of lone pair from oxygen to hydrogen (1)	Can show O-Al bond breaking	
7(c)(iii)	В		1
7(c)(iv)	• (concentrated) sulfuric acid / H_2SO_4 or (concentrated) hydrochloric acid/HCl (1)	Do not award dilute sulfuric acid	1
	1	(Total Question 7 =	17 marks)

Question Number	Answer	Additional Guidance	Mark
8(a)	Any one from:		1
	• $C_{3}H_{6} + C_{7}H_{16}$ (1) • $2C_{3}H_{6} + C_{4}H_{10}$ (1) • $3C_{3}H_{6} + CH_{4}$ (1)		
8(b)(i)	• X is propan-1-ol (1)		4
	 Step 2 reaction with aqueous NaOH (and heat) Step 3 oxidation to acid using acidified K₂Cr₂O₇ with excess oxidising agent / heated under reflux (1) 	Allow 'H ⁺ and $Cr_2O_7^{2-\prime}$	
8(b)(ii)	 An explanation that makes reference to two of the following points: main product from reaction with HBr will be 2-bromopropane (1 as secondary carbocation (formed in mechanism) is more stable (than primary) (1) 	 Allow reverse argument e.g. 1-bromopropane is the minor product as primary carbocation (formed in mechanism) is less stable (than secondary) 	2

Question Number	Answer		Additional Guidance	Mark
8(c)(i)	n $C = C$ H			2
	• formulae	(1)	Ignore type of brackets	
	balancing and brackets	(1)	2nd mark dependent on correct formulae	
8(c)(ii)	A description that makes reference to:			2
	 nylon is formed by a condensation reaction / releases HCl when polymers forms 	(1)		
	 nylon is formed from two different monomers 	(1)		
	 poly(propene) is formed by an addition reaction forms only one product 	/ (1)		
	 poly(propene) is formed from only one type of monomer 	(1)		

Que Nu 8(c)
Pearson Edexcel Level 3 Advanced GCE in Chemistry Sample Assessment Materials – Issue 1 – February 2015 © Pea

Question Number	Answer	Additional Gui	idance Mark
8(c)(iii)	An answer that makes reference to two of the followin points:	3	2
	 reprocessing of polymers into simpler compound use as feedstock in the chemical industry 	s for (1)	
	 capture and use of energy from incineration 	(1)	
	 sorting (Using IR) and recycling of polymers 	(1)	
	 removal of harmful/toxic/corrosive products forr during incineration 	ned (1)	
	1		

(Total Question 8 = 13 marks)

Question	Answer		Additional Guidance	Mark
9(a)	 Horization attack by hydroxide ion on positive carbon breaking of C-Cl bond formula of transition state with correct charge `partial' bonds to OH and Cl shown in transition state 	(1) (1) (1) (1) state (1)	Arrow must start from O and go to C; lone pair not required Arrow from bond to Cl Ignore brackets	4
9(b)(i)	3-bromo-3-methylhexane	(1)	Allow 3-methyl-3-bromohexane	1

Question Number	A	nswer	Additional Guidance	Mark
*9(b)(ii)	This question assesses a st coherent and logically struct fully-sustained reasoning. Marks are awarded for indice answer is structured and sh The following table shows h awarded for indicative cont Number of indicative marking points seen in answer 6 5–4 3–2 1 0	udent's ability to show a stured answer with linkages and cative content and for how the nows lines of reasoning. now the marks should be ent. Number of marks awarded for indicative marking points 4 3 2 1 0	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points which is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	6

Question Number	Answer		Additional Guidance	Mark
*9(b)(ii) cont.	The following table shows how the marks should be awarded for structure and lines of reasoning.			
		Number of marks awarded for structure of answer and sustained line of reasoning		
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2		
	Answer is partially structured with some linkages and lines of reasoning.	1		
	Answer has no linkages between points and is unstructured.	0		
	 points and is unstructured. Indicative content Reaction 2 forms optically active product as only one enantiomer formed (S_N2) as hydroxide ion can only attack on opposite side to leaving group which causes inversion (of configuration) of the chiral centre Reaction 3 product mixture shows no significant optical activity as a racemic mixture forms (S_N1) as intermediate is a planar carbocation, so can be attacked (by hydroxide ion) from either side 		Could use labelled diagrams to illustrate attack of hydroxide ions in either mechanism	

Question Number	Answer	Additional Guidance	Mark
*9(b)(ii)	Or		
cont.	 mechanism of reaction 2 is S_N2 because single enantiomer is formed as product and is optically active as hydroxide ion can only attack on opposite side to leaving group reaction 3 produces a racemic mixture as product is not significantly optically active so reaction 3 is S_N1 as the two products rotate the plane of plane-polarised light in opposite directions 		
9(c)(i)	• two correct structures (1)		1
9(c)(ii)	 An explanation that makes reference to the following points: in alkenes this occurs due to non-rotation of C=C bond (1) because π-bond prevents it / π-bond above and below σ - bond (1) 	Allow no free rotation around the carbon-carbon double bond	2

(Total Question 9 = 14 marks)