

GCSE MATHEMATICS 8300/2H

Higher Tier Paper 2 Calculator

Mark scheme

June 2020

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2020 AQA and its licensors. All rights reserved

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≼ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
1	$x + 4x \equiv 5x$	B1	
	Ad	ditional G	Guidance

Q	Answer	Mark	Comments		
	SAS	B1			
2	Additional Guidance				

Q	Answer	Mark	Comments	
3	5.2×10^{-4}	B1		
	Additional Guidance			

Q	Answer	Mark	Comments		
	a ²	B1			
4	Additional Guidance				

Q	Answer	Mark	Comments	
	Plots at least 3 points correctly	M1	$\pm \frac{1}{2}$ square	
	All four points correctly plotted and joined	A1	$\pm \frac{1}{2}$ square ignore working for part (b)	
5(2)	Additional Guidance			
5(4)	$\pm \frac{1}{2}$ square means half a small square horizontally and vertically			
	If a point is within tolerance the line must be within $\pm \frac{1}{2}$ square of their point			
	Mark intention for joining point to poir			

Q	Answer	Mark	Comments		
	[70, 78]	B1			
	Additional Guidance				
5(b)	Answer in range with or without work graph	ing, with r	no graph or incorrect	B1	
	70.5 – 75 on answer line (both values in range)			B1	

Q	Answer	Mark	Comments		
	15		B1 answer 3 or answer 5 or answer 3 (×) 5		
		B2	or (75 =) 3 (×) 5 (×) 5 o or (105 =) 3 (×) 5 (×) 7	r (75 =) 3 (×) 5 ²	
			or (1) 3 5 15 25 (75)		
			or (1) 3 5 7 15 21 35	(105)	
	Ad	ditional G	Buidance		
	NB 15 from $3 + 5 + 7$ does not score elsewhere				
6	Prime factor responses for B1 may b factor tree or in a Venn diagram				
	eg1 3 5 5 in repeated division or fa	B1			
	eg2 3 5 7 inside one circle of a Ve	B1			
	eg3 3 5 inside the intersection of a	Venn dia	gram	B1	
	For products of prime factors, repeated division, factor trees and Venn diagrams, ignore inclusion of factors of 1				
	me factor but does not				
	B1 can be awarded even if LCM is su	ly worked out			
	List of factors may be seen as factor	pairs			

Q	Answer	Mark	Commer	nts
	2 and 5 with no other roots	B2	either order B1 at least one correct one incorrect root SC1 (2, 0) or (5, 0) or	root with up to (2, 5) or (5, 2)
	Ad	ditional G	Buidance	
	x = 2 and $x = 5$			B2
	2, 5 or 5, 2			B2
	(2, 0) and (5, 0) and 2 and 5			SC1
7(a)	(2, 0) and (5, 0) and -2 and -5			B0
7(0)	2, 0 and 5, 0 (both pairs imply coordinates)			SC1
	2, 0 or 5, 0 (one pair implies roots)			B1
	(0, 2) and (0, 5)			B0
	0, 2 and 0, 5 (both pairs imply coordinates)			B0
	0, 2 or 0, 5 (one pair implies roots)			B1
	Both answers embedded			
	$2^2 - 7 \times 2 + 10 = 0$ and $5^2 - 7 \times 5 + 10 = 0$	10 = 0		B1
	(x-2)(x-5)			B0

Q	Answer	Mark	Commer	its
	3.5	B1	oe	
	Ade			
	x = 3.5			B1
7(b)	3.5x			B0
	Ignore any y-coordinate even with bra			
	eg (3.5, -2.25) or 3.5, -2 or $x = 3$.	B1		
	(-2.25, 3.5)			B0

Q	Answer	Mark	Comment	ts
	40 (women) and 44 (men) and No or 40 : 44 and No or 84 and No or 8 (women leave) and 2 (men arrive) and No	В2	oe B1 40 (women) and 44 or 40 : 44 or 84 or 8 (women leave) and	(men) 2 (men arrive)
8	Additional Guidance			
	NB 84 from incorrect working eg $41 + 43 = 84$			B0
	For B1 the values may be seen among others eg1 20: 22 30: 33 40: 44 50: 55 eg2 21, 42, 63, 84, 105, eg3 10, 20, 30, 40, 50, and 11, 22, 33, 44, 55, eg4 $\frac{44}{84}$ (implies 84)			B1
	For B2 the value(s) must be chosen that point and No must be indicated	oy eg circ	ling or a list stopping at	

Q	Answer	Mark	Commen	ts	
	Alternative method 1				
	$200 - 2 \times 5 \times 5$ or $200 - 50$ or 150 or $4 \times 5 \times y$ or $20y$	M1	oe eg $5y + 5y + 5y + 5y$ implied by 37.5 or answe	r 937.5	
	$4 \times 5 \times y = 200 - 2 \times 5 \times 5$ or $4 \times 5 \times y = 200 - 50$ or $4 \times 5 \times y = 150$ or $150 \div 4 \div 5$ or $150 \div 20$ or 7.5	M1dep	oe eg 20y = 150		
9(a)	187.5	A1	oe		
	Alternative method 2				
	200 – 2 × 5 × 5 or 200 – 50 or 150	M1	oe implied by 37.5 or answe	r 937.5	
	150 ÷ 4 × 5 or 37.5 × 5	M1dep	oe		
	187.5	A1	oe		
	Additional Guidance				
	Embedded 7.5 eg $4 \times 5 \times 7.5 = 150$			M1M1	

Q	Answer	Mark	Comments	
	It is smaller than the answer to part (a)	B1		
9(b)	Additional Guidance			

Q	Answer	Mark	Comments	
	Alternative method 1 Total % for	or A after (6 tests – total % for B after 5 tests	
	60 × 5 or 300 or 52 × 5 or 260	M1	oe	
	$\frac{24}{50} \times 100$ or 0.48×100 or 48	M1	oe 348 implies M1M1	
	$60 \times 5 + \frac{24}{50} \times 100 - 52 \times 5$ or 300 + 48 - 260 or 88	M1dep	oe eg 348 – 260 dep on M1M1	
	44	A1	allow $\frac{44}{50}$	
10	Alternative method 2 Total score for A after 6 tests – total score for B after 5 tests			
	$\frac{60}{100}$ × 50 or 30	M1	oe allow $\frac{30}{50}$ implied by 150 or 174	
	$\frac{52}{100} \times 50$ or 26	M1	oe allow $\frac{26}{50}$ implied by 130	
	$\frac{60}{100} \times 50 \times 5 + 24 - \frac{52}{100} \times 50 \times 5$ or 150 + 24 - 130	M1dep	oe eg 174 – 130 dep on M1M1	
	44	A1	allow $\frac{44}{50}$	

Mark scheme and Additional Guidance continues on the next two pages

Q	Answer	Mark	Comments	
	Alternative method 3 Total sco	re for A af	ter 6 tests – total score for B after 5 tests	
	50 × 5 or 250	M1	oe implied by 150 or 130 or 174	
	$\frac{60}{100} \times 50 \times 5 \text{ or } 150$ and $\frac{52}{100} \times 50 \times 5 \text{ or } 130$	M1dep	oe allow $\frac{150}{250}$ and $\frac{130}{250}$	
	$\frac{60}{100} \times 50 \times 5 + 24 - \frac{52}{100} \times 50 \times 5$ or 150 + 24 - 130	M1dep	oe eg 174 – 130	
	44	A1	allow $\frac{44}{50}$	
10 cont	Alternative method 4 Difference in scores after 5 tests + 6th score for A			
	60-52 or 8	M1	oe	
	$\frac{60-52}{100} \times 50$ or 4	M1dep	oe eg $\frac{60}{100} \times 50 - \frac{52}{100} \times 50$ or $30 - 26$ allow $\frac{4}{50}$	
	$\frac{60-52}{100} \times 50 \times 5 + 24$ or $4 \times 5 + 24$ or 20 + 24	M1dep	oe	
	44	A1	allow $\frac{44}{50}$	

Additional Guidance is on the next page

	Additional Guidance				
	To award the 3rd M a calculation or a value (not an equation) must be seen				
	Select the scheme that favours the student for the first 2 M marks even if not subsequently used				
10 cont	Alt 1 Do not award 1st M for 300 if incorrect method seen eg $6 \times 50 = 300$ does not score the 1st M				
	Alt 1 Do not award 2nd M for 48 if incorrect method seen eg $100 - 52 = 48$ does not score the 2nd M				
	Alt 2 Do not award 2nd M for 26 if incorrect method seen eg $50 - 24 = 26$ does not score the 2nd M				

Q	Answer	Mark	Commen	its
	2625 ÷ 250		oe eg <u>2.625×1000</u>	
	or		250	
	2.625 ÷ 250			
	or	M1		
	2625 ÷ 0.00025			
	or			
11	answer with digits 105			
	10.5	A1	oe	
	Additional Guidance			
	Digits 105 may have additional zeros			
	eg1 0.000105			M1A0
	eg2 10500			M1A0
	eg3 10.05			M0A0

Q	Answer	Mark	Commer	nts	
12	$\frac{9-3}{12} \text{ or } \frac{6}{3}$ or $2x (+ c) \text{ where } c \text{ is a constant}$ 2	M1 A1	oe eg $\frac{3-9}{-2-1}$ or $\frac{-6}{-3}$		
	Additional Guidance				
	2x may be implied eg y - 3 = 2(x + 2)			M1A0	

Q	Answer	Mark	Comments	
	$\frac{1}{2} \times (2.8 + 2.1) (\times h)$ or 2.45(h)	M1	oe eg 2.1(h) + 0.5(h) \times 0.7 any letter may be implied	
13	$\frac{1}{2} \times (2.8 + 2.1) \times h = 39.2$ or $(2.8 + 2.1) \times h = 39.2 \times 2$ or $39.2 \div 2.45$ or $78.4 \div 4.9$	M1dep	oe equation or calculation	
	16	A1	SC1 8	
	Additional Guidance			
	Different letter used eg $2.1h + 0.5x \times 0.7$ is M0 unless recovered			

Q	Answer	Mark	Comments		
	Alternative method 1				
	6500 × 1.05 or 6825		oe eg 6500 + 0.05 × 6500		
		M1	or 6500 + 325 may be implied eg 7475		
	6500 × 1.05 ³		oe		
	or		eg their 6825 × 1.05 or 7166.25		
	7524.()	M1dep	and		
	or		their 7166.25 × 1.05		
	7525		6825 × 1.05 ² is M2		
	7524.() and Yes		oe		
	or	A1	eg 7524.() which is more than 7500		
	7525 and Yes				
	Alternative method 2				
14	1.05 ³ or 1.157		oe		
	or 1.158 or 1.16				
	or	M1			
	7500/ 6500 or 1.15(3) or 1.154				
	1.05 ³ or 1.157		ое		
	or 1.158 or 1.16				
	and	M1dep			
	$\frac{7500}{6500}$ or 1.15(3) or 1.154				
	1.157 or 1.158 or 1.16				
	and				
	1.15(3) or 1.154	A1			
	and				
	Yes				

Additional Guidance is on the next page

	Additional Guidance	
	Working is implied by a correct value	
	7524.() and Yes with no working	M1M1A1
	7525 and Yes with no working	M1M1A1
	7524.() with no working	M1M1A0
	7525 with no working	M1M1A0
	7525 > 7500	M1M1A1
14 cont	7525 < 7500	M1M1A0
	For year on year working allow truncation/rounding	
	$eg \ 6825 \times 1.05 = 7166$	M1
	7166 × 1.05 = 7524.30 Yes	M1A1
	Increasing by 5% four or more times can score a maximum of M1M1A0	
	Increasing by 5% two times can score a maximum of M1M0A0	
	Do not allow misreads of 5%	

Q	Answer	Mark	Commen	ts	
	Alternative method 1				
	ac = b + 5c	M1	oe fraction eliminated		
	ac - 5c = b or $c(a - 5) = bor \frac{b}{a - 5}$	M1dep	oe terms in c collected		
	$c = \frac{b}{a-5}$	A1			
	Alternative method 2				
15	$a-5=\frac{b}{c} \qquad \qquad M1$				
	$\frac{1}{a-5} = \frac{c}{b} \text{ or } \frac{a-5}{b} = \frac{1}{c}$ or $c(a-5) = b$ or $\frac{b}{a-5}$	M1dep			
	$c = \frac{b}{a-5}$	A1			
	Additional Guidance				
	$c = \frac{b}{a-5}$ in working lines with $\frac{b}{a-5}$ on answer line			M1M1A1	

Q	Answer	Mark	Commen	ts
	$\frac{4}{11} \times 22 \text{ or } 8$ or $\frac{40}{100} \times 5 \text{ or } 2$ or $22 \times 7 \times 5 \text{ or } 770$ or $\frac{4}{11} \times \frac{40}{100} \text{ or } \frac{160}{1100} \text{ or } \frac{8}{55}$	M1	oe accept $\frac{8}{22}$ for 8 accept $\frac{2}{5}$ for 2	
16	16 $\begin{vmatrix} \frac{4}{11} \times 22 \times 7 \times \frac{40}{100} \times 5 \\ \text{or} \\ 8 \times 7 \times 2 \\ \text{16} \end{vmatrix} \text{ oe eg } \frac{4}{11} \times \frac{2}{5} \times 770 \\ \text{or } \frac{8}{55} \times 770 \\ \text{or } \frac{8}{22} \times \frac{7}{7} \times \frac{2}{5} \text{ or } \frac{112}{77} \\ \text{or } \frac{8}{22} \times \frac{7}{7} \times \frac{2}{5} \text{ or } \frac{112}{77} \\ \text{or } \frac{8}{22} \times \frac{7}{7} \times \frac{2}{5} \text{ or } \frac{112}{77} \\ \text{or } \frac{8}{22} \times \frac{7}{7} \times \frac{2}{5} \text{ or } \frac{112}{77} \\ \text{or } \frac{8}{22} \times \frac{7}{7} \times \frac{2}{5} \text{ or } \frac{112}{77} \\ \text{or } \frac{8}{22} \times \frac{7}{7} \times \frac{2}{5} \text{ or } \frac{112}{77} \\ \text{or } \frac{8}{22} \times \frac{7}{7} \times \frac{2}{5} \text{ or } \frac{112}{77} \\ \text{or } \frac{8}{22} \times \frac{7}{7} \times \frac{2}{5} \text{ or } \frac{112}{77} \\ \text{or } \frac{8}{22} \times \frac{7}{7} \times \frac{2}{5} \text{ or } \frac{112}{77} \\ \text{or } \frac{8}{22} \times \frac{7}{7} \times \frac{2}{5} \text{ or } \frac{112}{77} \\ \text{or } \frac{8}{7} \times \frac{7}{7} \times \frac{2}{5} \text{ or } \frac{112}{77} \\ \text{or } \frac{8}{7} \times \frac{112}{77} \times \frac{112}{77} \\ \text{or } \frac{112}{77} \times \frac{112}{77} \times \frac{112}{77} \\ \text{or } \frac{112}{77} \times \frac{112}{77} \times \frac{112}{77} \\ \text{or } \frac{112}{77} \times \frac{112}{77} \times \frac{112}{77} \times \frac{112}{77} \\ \text{or } \frac{112}{77} \times $			
	112	A1	allow 112 out of 770	
	Additional Guidance			
<u>112</u> 770				M1M1A0
	$\frac{8}{55}$ from $\frac{112}{770}$			M1M1A0
	$\frac{8}{55}$ from $\frac{4}{11} \times \frac{2}{5}$ (×1)			M1M0A0
	Allow [0.36, 0.364] for $\frac{4}{11}$			
	eg $0.36 \times 22 = 7.92$ (allow 7 if method seen)			M1
	7.92 \times 7 \times 2 (or 7 \times 7 \times 2)			M1A0

Q	Answer	Mark	Comments		
	[82.5, 83.5]	B1			
17(a)	Additional Guidance				

Q	Answer	Mark	Commer	nts
	156	B1	accept 155 or 157	
	their $156 \times (0.)32$ or 4992 or 49.92 and $(200 - \text{their } 156) \times (0.)39$ or $44 \times (0.)39$ or 1716 or 17.16 67.08 Add 155 $155 \times 0.32 + 45 \times 0.39$	M1 A1ft ditional G	0 < their 156 < 200 but their 156 cannot be 6708 implies B1M1 ft their 156	90 B1 M1
17(b)	= 49.60 + 17.55 = 67.15			A1
17(0)	157 157 \times 0.32 + 43 \times 0.39 = 50.24 + 16.77 = 67.01			B1 M1 A1
	158 158 \times 0.32 + 42 \times 0.39 = 50.56 + 16.38 = 66.94			B0 M1 A1ft
	90 90 \times 0.32 + 110 \times 0.39 = 28.80 + 42.90 = 71.70			B0 M0 A0

Q	Answer	Mark	Commer	its
	Alternative method 1			
	$\tan 62 = \frac{h}{5}$	M1	oe eg tan (90 – 62) = $\frac{5}{h}$ or $\frac{h}{\sin 62} = \frac{5}{\sin 28}$ any letter	i - I
	5 × tan 62 or 9.4(0)	M1dep	oe eg $\frac{5}{\tan 28}$ or $\frac{5}{\sin 28} \times \sin 62$	
	sin x = $\frac{\text{their 9.4(0)}}{12}$ or sin x = [0.78, 0.784]	oe eg sin x = $\frac{5 \times \tan 62}{12}$ M1dep or $\cos x = \frac{\sqrt{12^2 - \text{their } 9.4^2}}{12}$		2
18	[51.536, 51.63]	A1	accept 52 with M3 seen	
	Alternative method 2			
	$\left(\frac{5}{\cos 62}\right)^2 - 5^2$ or [88.4, 88.43]	M1	oe	
	$\sqrt{\left(\frac{5}{\cos 62}\right)^2 - 5^2}$ or 9.4(0)	M1dep	oe	
	sin x = $\frac{\text{their 9.4(0)}}{12}$ or sin x = [0.78, 0.784]	M1dep	oe eg cos x = $\frac{\sqrt{12^2 - tt}}{1}$	neir 9.4 ² 2
	[51.536, 51.63]	A1	accept 52 with M3 seen	
	Ad	ditional G	Buidance	
	Answer in range with truncation to 51			M1M1M1A1

Q	Answer	Mark	Commer	its
	4a + 2b and $10a + 5b$	M1		
	2(2a + b) or $5(2a + b)$	M1		
	$\frac{2(2a+b)}{5(2a+b)}$ and $\frac{2}{5}$ or 2(2a+b) and 0.4	A1		
	$\frac{1}{5(2a+b)}$ and 0.4			
19	Ad			
13	$\frac{2}{5}$ with no working or only from subs	MOMOAO		
	Ignore substitution of values			
	eg $\frac{2(2a+b)}{5(2a+b)} = \frac{2}{5}$ followed by substitution of values			
	$\frac{4a + 2b}{10a + 4b} = \frac{2}{5}$			M1M0A0
	2b + 4a and $5b + 10a$ are equivalent	ent to 4a	a + 2b and $10a + 5b$ etc	

Q	Answer	Mark	Commer	nts
	$180 - \frac{360}{10}$ or $180 - 36$ or $1440 \div 10$ or 144	M1	oe eg (10 – 2) × 180 ÷ may be seen on diagran	10 1
20	$\frac{540 - 3 \times \text{their 144}}{2}$ or $\frac{540 - 432}{2}$ or $\frac{108}{2}$ or $360 - 90 - \text{their 144} - \frac{\text{their 144}}{2}$ or their 144 - 90	M1dep	oe eg (5-2)×180-3× 2	their 144
	54	A1		
	Additional Guidance			
	540 ÷ 10 = 54			M0M0A0
	144 worked out but not used			M1M0A0

Q	Answer	Mark	Comments	
	(2.5, 0.4)	B1		
21(a)	Additional Guidance			

Q	Answer	Mark	Commen	its
	Valid criticism B1 eg the graph should go th			hrough (4, 16)
	Ade	ditional G	Buidance	
	(4, 15) should be (4, 16)			B1
	It should be (4, 16)			B1
	Graph should end at $(y =)$ 16			B1
	(4, 15) is not on the graph			B1
21(b)	The point at $x = 4$ is wrong			B1
	The point at 4 is wrong			B0
	2 ⁴ is 16			B1
	4 ² is 16			B0
	The last point is wrong			B1
	One of the points is wrong			B0
	Graph isn't high enough			B0

Q	Answer	Mark	Comments
	A	B1	
22	Ade	ditional G	Guidance

Q	Answer	Mark	Commer	nts
	Alternative method 1			
	$5^2 + 12^2$ or 169 or $\sqrt{5^2 + 12^2}$ or 13	M1	oe	
	$\sqrt{16^2}$ – their 169 or $\sqrt{16^2}$ – their 13 ² or $\sqrt{87}$ or [9.3, 9.33]	M1dep	oe eg $\sqrt{16^2 - 5^2 - 12^2}$ may be implied eg [18.6	6, 18.7]
	0.5 × 5 × 12 × 2 × their [9.3, 9.33]	M1dep	oe	
	[558, 559.8] or 60√87 A1 A1 SC3 [1116		accept 560 with full metl SC3 [1116, 1119.6] or	nod seen 120 √87
	Alternative method 2			
23	$16^2 - 5^2$ or 231 or $\sqrt{16^2 - 5^2}$ or 15.19(8) or 15.199 or 15.2	M1	Oe	
	$\sqrt{\text{their } 231 - 12^2}$ or $\sqrt{\text{their } 15.2^2 - 12^2}$ or $\sqrt{87}$ or [9.3, 9.33]	M1dep	oe eg $\sqrt{16^2 - 5^2 - 12^2}$ may be implied eg [18.6	6, 18.7]
	0.5 × 5 × 12 × 2 × their [9.3, 9.33]	M1dep	oe	
	[558, 559.8] or 60√87	A1	accept 560 with full meth SC3 [1116, 1119.6] or	nod seen 120 √87
	Additional Guidance			
	Lengths may be seen on the diagram	n		
	1st and 2nd M marks can be awarde	d even if r	not subsequently used	
	$5^2 + 12^2 + 16^2$			M1M0M0A0

Q	Answer	Mark	Commer	its
24(a)	(–5, –2)	B2	B1 point (1, –4) from rot may be seen on the diag or point (–5, –2) marked or SC1 (–7, 6)	ration gram n diagram
	Additional Guidance			
	(-5, -2) marked on diagram and ans	wer (–2, –	5)	B1

Q	Answer	Mark	Comments	
	$\mathbf{y} = -\mathbf{x}$	B1		
24(b)	b) Additional Guidance			

Q	Answer	Mark	Commer	nts
	(3x-4)(x+5)	B2	oe product of brackets eg $(x + 5)(3x - 4)$ or $(3x)$ or $-(4 - 3x)(x + 5)$ B1 $(3x + a)(x + b)$ when or $a + 3b = 11$ or $3x(x + 5) - 4(x + 5)$ or $x(3x - 4) + 5(3x - 4)$	x – 4)(5 + x) re ab = –20
	Ad	ditional G	Guidance	
	Ignore attempts to solve $3x^2 + 11x -$	20 = 0		
	(3x + 4)(x - 5)			B1
25	(3x + 4)(x + 5)			B0
	(3x-1)(x+4)			B1
	(3x + 1)(x - 4)			B0
	Condone multiplication signs between brackets for B2 eg $(3x - 4) \times (x + 5)$			B2
	Condone multiplication signs between brackets for B1			
	eg (3x - 1) × (x + 20)			B1
	Condone missing final bracket			DO
	eg1 $(3x-4)(x+5)$ eg2 $(3x-20)(x+1)$			B2 B1
	Do not allow x3 for 3x etc			

Q	Answer	Mark	Commer	nts
	24.5 or 25.5 or 7.45 or 7.55	B1	accept 25.49 for 25.5 accept 7.549 for 7.55	
	30 × their 25.5 or 765 or 20 × their 7.55 or 151	M1	their 25.5 must be (25, 2 their 7.55 must be (7.5,	26] 7.6]
	30 × their 25.5 + 20 × their 7.55 or 765 + 151 or 916	M1dep	oe eg 920 – 30 × their 2 – 20 × their 7.55 their 25.5 must be (25, 2 their 7.55 must be (7.5, 7	25.5 26] 7.6]
26	25.5 and 7.55 and 916 and Yes	A1	oe eg 25.5 and 7.55 a	and -4 and Yes
	Additional Guidance			
	Only using lower bounds can score a			
	Condone 25.50 for 25.5 etc			
	916 and Yes without both 25.5 and 7.55 is A0 but the B mark and M marks are possible			DAMANAAAA
	eg 30 × 25.5 + 20 × 7.54 (= 915.8) =	916 Yes	3	BIMIMIAU
	916 and Yes with no working			Zero
	Yes can be implied eg1 $30 \times 25.5 + 20 \times 7.55 = 916$ which is less than 920 eg2 $30 \times 25.5 + 20 \times 7.55 = 916$ so she can			B1M1M1A1 B1M1M1A1

Q	Answer	Mark	Comments
	Alternative method 1		
	$\frac{4}{20} \times \frac{16}{19} \text{ or } \frac{64}{380} \text{ or } \frac{16}{95}$ or $\frac{6}{20} \times \frac{10}{19} \text{ or } \frac{60}{380} \text{ or } \frac{3}{19}$ or $\frac{7}{20} \times \frac{3}{19} \text{ or } \frac{21}{380}$	M1	oe fractions or decimals condone $\frac{4}{20} \times \frac{16}{20}$ etc
27	Any 2 of $\frac{4}{20} \times \frac{16}{19} \text{ or } \frac{64}{380} \text{ or } \frac{16}{95}$ and $\frac{6}{20} \times \frac{10}{19} \text{ or } \frac{60}{380} \text{ or } \frac{3}{19}$ and $\frac{7}{20} \times \frac{3}{19} \text{ or } \frac{21}{380}$	M1dep	oe fractions or decimals
	$\frac{4}{20} \times \frac{16}{19} + \frac{6}{20} \times \frac{10}{19} + \frac{7}{20} \times \frac{3}{19}$ or $\frac{64}{380} + \frac{60}{380} + \frac{21}{380}$	M1dep	oe fractions or decimals eg $\frac{16}{95} + \frac{3}{19} + \frac{21}{380}$
	$\frac{145}{380} \text{ or } \frac{29}{76}$ or [0.381, 0.382] or [38.1%, 38.2%]	A1	accept 0.38 or 38% with full working SC2 $\frac{145}{400}$ or $\frac{29}{80}$ or 0.3625 or 36.25%

Mark scheme and Additional Guidance continues on the next 4 pages

Q	Answer	Mark	Comments
	Alternative method 2		
	$\frac{6}{20} \times \frac{4}{19} \text{ or } \frac{24}{380} \text{ or } \frac{6}{95}$ or $\frac{7}{20} \times \frac{10}{19} \text{ or } \frac{70}{380} \text{ or } \frac{7}{38}$	M1	oe fractions or decimals condone $\frac{6}{20} \times \frac{4}{20}$ etc
	or $\frac{3}{20} \times \frac{17}{19}$ or $\frac{51}{380}$		
27 cont	Any 2 of $\frac{6}{20} \times \frac{4}{19}$ or $\frac{24}{380}$ or $\frac{6}{95}$ and $\frac{7}{20} \times \frac{10}{19}$ or $\frac{70}{380}$ or $\frac{7}{38}$ and $\frac{3}{20} \times \frac{17}{19}$ or $\frac{51}{380}$	M1dep	oe fractions or decimals
	$\frac{6}{20} \times \frac{4}{19} + \frac{7}{20} \times \frac{10}{19} + \frac{3}{20} \times \frac{17}{19}$ or $\frac{24}{380} + \frac{70}{380} + \frac{51}{380}$	M1dep	oe fractions or decimals eg $\frac{6}{95} + \frac{7}{38} + \frac{51}{380}$
	$\frac{145}{380} \text{ or } \frac{29}{76}$ or [0.381, 0.382] or [38.1%, 38.2%]	A1	accept 0.38 or 38% with full working SC2 $\frac{145}{400}$ or $\frac{29}{80}$ or 0.3625 or 36.25%

Mark scheme and Additional Guidance continues on the next 3 pages

Q	Answer	Mark	Comments
	Alternative method 3		
	$\frac{6}{10} \times \frac{15}{10}$ or $\frac{90}{10}$ or $\frac{9}{10}$		oe fractions or decimals
	20 19 380 38		condone $\frac{6}{20} \times \frac{15}{20}$ etc
	7 9 63		20 20
	$\frac{1}{20} \times \frac{1}{19}$ or $\frac{1}{380}$	M1	
	or		
	$\frac{3}{20} \times \frac{2}{19}$ or $\frac{6}{380}$ or $\frac{3}{190}$		
	Any 2 of		oe fractions or decimals
	$\frac{6}{20} \times \frac{15}{19}$ or $\frac{90}{380}$ or $\frac{9}{38}$		
27 cont	and		
	$\frac{7}{20} \times \frac{9}{19}$ or $\frac{63}{380}$	M1dep	
	and		
	$\frac{3}{20} \times \frac{2}{19}$ or $\frac{6}{380}$ or $\frac{3}{190}$		
	$1 - \frac{4}{1 - 1} - \frac{6}{1 - 1} \times \frac{15}{1 - 1} - \frac{7}{1 - 1} \times \frac{9}{1 - 1}$		oe fractions or decimals
	20 20 19 20 193 2	M1dep	eg 1 - $\frac{1}{5}$ - $\frac{9}{38}$ - $\frac{63}{380}$ - $\frac{3}{190}$
	$-\frac{3}{20}\times\frac{1}{19}$		
	or		
	$1 - \frac{4}{20} - \frac{90}{380} - \frac{63}{380} - \frac{6}{380}$		
	$\frac{145}{145}$ or $\frac{29}{145}$	A1	accept 0.38 or 38% with full working
	380 76 or [0.381_0.382]		SC2 $\frac{145}{400}$ or $\frac{29}{80}$
	or [38.1%, 38.2%]		or 0.3625 or 36.25%

Mark scheme and Additional Guidance continues on the next 2 pages

Q	Answer	Mark	Comments	
	Alternative method 4			
	$\frac{7}{20} \times \frac{16}{19}$ or $\frac{112}{380}$ or $\frac{28}{95}$		oe fractions or decimals condone $\frac{7}{20} \times \frac{16}{20}$ etc	
	$\frac{6}{20} \times \frac{9}{19}$ or $\frac{54}{380}$ or $\frac{27}{190}$	M1		
	or $\frac{4}{20} \times \frac{3}{19}$ or $\frac{12}{380}$ or $\frac{3}{95}$			
	Any 2 of		oe fractions or decimals	
	$\frac{7}{20} \times \frac{16}{19}$ or $\frac{112}{380}$ or $\frac{28}{95}$			
27 cont	and	Madan		
	$\frac{6}{20} \times \frac{9}{19}$ or $\frac{54}{380}$ or $\frac{27}{190}$	windep		
	and			
	$\frac{4}{20} \times \frac{3}{19}$ or $\frac{12}{380}$ or $\frac{3}{95}$			
	$1 - \frac{3}{22} - \frac{7}{22} \times \frac{16}{10} - \frac{6}{22} \times \frac{9}{10}$		oe fractions or decimals	
	20 20 19 20 19 4 3	M1dep	eg 1 - $\frac{3}{20}$ - $\frac{28}{95}$ - $\frac{27}{190}$ - $\frac{3}{95}$	
	$-\frac{1}{20} \times \frac{1}{19}$			
	or			
	$1 - \frac{3}{20} - \frac{112}{380} - \frac{54}{380} - \frac{12}{380}$			
	$\frac{145}{29}$ or $\frac{29}{29}$	A1	accept 0.38 or 38% with full working	
	380 76 or [0.381_0.382]		SC2 $\frac{145}{400}$ or $\frac{29}{80}$	
	or [38.1%, 38.2%]		or 0.3625 or 36.25%	

Mark scheme and Additional Guidance continues on the next page

Q	Answer	Mark	Commen	ts		
	Alternative method 5					
	4×16 or 6×10 or 7×3		oe eg 64 or 60 or 21			
	or	M1	or			
	3×17 or 7×10 or 6×4		51 or 70 or 24			
	Any 2 of		oe			
	4×16 and 6×10 and 7×3		implied by 145			
	or any 2 of	мааер				
	3×17 and 7×10 and 6×4					
	$\frac{4\times16+6\times10+7\times3}{20\times19}$		oe			
	or	M1dep				
	$\underline{3\times17+7\times10+6\times4}$					
27	20×19					
cont	$\frac{145}{1}$ or $\frac{29}{1}$		accept 0.38 or 38% with	full working		
	380 76	A1	SC2 $\frac{145}{400}$ or $\frac{29}{80}$			
	or [38.1%, 38.2%]		or 0.3625 or 36.25%			
	Additional Guidance					
	ignore simplification or conversion at					
	For M marks accept oe decimals rou					
	Select the scheme that favours the s if not subsequently used					
	Using $\frac{4}{20} \times \frac{16}{20}$ etc can score M1M					
	Do not award marks if a fraction comes from an incorrect method					
	eg Alt 1 $\frac{4}{20} \times \frac{15}{19} = \frac{3}{19}$			МО		

Q	Answer	Mark	Comments		
	Alternative method 1				
	0.5 × 4 × 10 or 20	M1	oe may be seen on graph		
	$\frac{75 - 0.5 \times 4 \times 10}{10} \text{ or } \frac{55}{10} \text{ or } 5.5$	M1dep	oe may be embedded eg $5.5 \times 10 = 55$		
	9.5	A1	oe		
	Alternative method 2				
28	Correct method or value for distance travelled in the first t seconds where $t > 4$	M1	eg distance for $12s = 100$ or distance for $9s = 0.5 \times (9 + 5) \times 10$ or 70 may be seen on graph		
	their distance – 75 10 or <u>75 – their distance</u> 10	M1dep	eg $\frac{100 - 75}{10}$ or $\frac{75 - 70}{10}$		
	9.5	A1	oe		
	Additional Guidance				
	1st M can be awarded even if not subsequently used				

Q	Answer	Mark	Comments
	$5(x^2 + 3)$ or $5x^2 + 15$ or $2x(4x + 1)$ or $8x^2 + 2x$	M1	oe ignore any denominators
	$5(x^2 + 3) = 2x(4x + 1)$ or $5x^2 + 15 = 8x^2 + 2x$	M1dep	oe allow both sides to have denominator $(4x + 1)(x^2 + 3)$ oe
	3x ² + 2x - 15 (= 0)	M1dep	oe equation with terms collected eg $3x^2 + 2x = 15$ no denominator allowed unless recovered in subsequent working
29	$\frac{-2 \pm \sqrt{2^2 - 4 \times 3 \times -15}}{2 \times 3}$ or $\frac{-2 \pm \sqrt{184}}{6}$ or $-\frac{1}{3} \pm \frac{1}{3} \sqrt{46}$ or 1.927 and -2.594 and $3x^2 + 2x - 15 (= 0)$ seen	M1	oe ft their 3-term quadratic allow correct factorisation of their 3-term quadratic
	1.93 and -2.59 and $3x^2 + 2x - 15$ (= 0) seen	A1	oe eg 1.93 and -2.59 with $3x^2 + 2x = 15$ seen

Additional Guidance is on the next page

	Additional Guidance			
	1.93 and -2.59 and $3x^2 + 2x - 15$ (= 0) not seen	Zero		
	1.927 and -2.594 and $3x^2 + 2x - 15$ (= 0) not seen	Zero		
20	One solution and $3x^2 + 2x - 15$ (= 0) not seen	Zero		
29 cont	Missing brackets must be recovered			
	$\frac{3x^2 + 2x - 15}{(4x+1)(x^2+3)} = 0$ followed by $3x^2 + 2x - 15 = (4x+1)(x^2+3)$	M1M1M0M0A0		
	$\frac{3x^2 + 2x - 15}{(4x+1)(x^2+3)} = 0$ followed by 1.93 and -2.59	M1M1M1M1A1		