Vrite your name here Surname	Ot	her names
Edexcel GCE	Centre Number	Candidate Number
Chemistr	' \ /	
Advanced Unit 4: General Prin Equilibria ar		anic Chemistry
Advanced Unit 4: General Prin Equilibria ar	nciples of Chem nd Further Orga ynoptic assessr	Paper Reference
Advanced Unit 4: General Prin Equilibria ar (including sy	nciples of Chem nd Further Orga ynoptic assess 3 – Afternoon	anic Chemistry nent)
Advanced Unit 4: General Prin Equilibria ar (including sy Monday 14 January 2013	nciples of Chem nd Further Orga ynoptic assess 3 – Afternoon es	Paper Reference

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box 🔀 and then mark your new answer with a cross \boxtimes . Methods for investigating reaction rates include 1 **A** colorimetry **B** collecting and measuring the volume of a gas **C** quenching, followed by titration with acid **D** quenching, followed by titration with iodine solution. Which method would be most suitable to investigate the rate of the following reactions? (a) $H_2O_2(aq) + 2I^{-}(aq) + 2H^{+}(aq) \rightarrow 2H_2O(I) + I_2(aq)$ (1) A B **C** D (b) $C_4H_9Br(I) + OH^{-}(aq) \rightarrow C_4H_9OH(I) + Br^{-}(aq)$ (1) 🖂 A B **C** D (Total for Question 1 = 2 marks) Use this space for any rough working. Anything you write in this space will gain no credit.

2 For a given initial reactant pressure, the half-life for a first order gaseous reaction was found to be 30 minutes. If the experiment were repeated at half the initial reactant pressure, the half-life would be A 15 minutes. **B** 30 minutes. **C** 45 minutes. **D** 60 minutes. (Total for Question 2 = 1 mark) To determine the activation energy (E_{2}) for a reaction, the variation of reaction rate 3 with temperature is investigated. The rate constant, k, for the reaction is related to the absolute temperature, T, by the expression $\ln k = -\frac{E_a}{R} \times \left(\frac{1}{T}\right) + \text{constant}$ where *R* is the gas constant. The activation energy for the reaction could be obtained by plotting a graph of vertical axis horizontal axis Α 🗵 Т k 1 B k T ln k Т 1 ln k T (Total for Question 3 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

P 4 1 2 1 4 A 0 4 2 8

6 The equation for the synthesis of methanol is

 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$

At equilibrium, when the temperature is 340 K, the total pressure is 20 atm. The moles of each component present at equilibrium are shown in the table below.

Formula	Equilibrium moles / mol	Mole fraction
СО	0.15	0.23
H ₂	0.32	
CH ₃ OH	0.18	0.28

(a) The mole fraction of hydrogen in the equilibrium mixture is (1) **A** 0.23 **B** 0.46 **C** 0.49 **D** 0.92 (b) The numerical value for the equilibrium partial pressure of the carbon monoxide, in atmospheres, is (1) A 3.0 **B** 4.6 **C** 5.0 **D** 9.2 (c) Units for the equilibrium constant, K_{p} , for this reaction are (1) 🖾 A no units 🖾 B atm C atm⁻¹ D atm⁻² (Total for Question 6 = 3 marks)

7	An aq	ueous solution of ammonium chloride, NH_4Cl , has a pH of less than 7 because
	⋈ A	the ammonium ions donate protons to water molecules giving rise to oxonium ions, $H_3O^+(aq)$.
	⊠ B	the chloride ions combine with hydrogen ions from water to form hydrochloric acid, HCl(aq).
	⊠ C	an aqueous solution of ammonium chloride is unstable and evolves ammonia gas, NH ₃ (g), leaving dilute hydrochloric acid.
	D 🛛	the ammonium chloride reacts with carbon dioxide from the atmosphere giving ammonium carbonate, $(NH_4)_2CO_3(aq)$, and hydrochloric acid, HCl(aq).
		(Total for Question 7 = 1 mark)
8		one of the following indicators is most suitable for titrating ethanoic acid with of dm ⁻³ sodium hydroxide?
	(Refer	to page 19 of your data booklet.)
	🖾 A	Thymol blue (acid)
	B	Bromothymol blue
	🖾 C	Thymol blue (base)
	🖾 D	Alizarin yellow R
		(Total for Question 8 = 1 mark)
9	What	is the conjugate base of the acid, HCO_3^- ?
		H ₂ CO ₃
	B	CO ₃ ²⁻
	 ⊠ C	OH-
	D	CO,
		² (Total for Question 9 = 1 mark)
	Use th	is space for any rough working. Anything you write in this space will gain no credit.

12 Questions (a) to (d) concern the following organic compounds.

Select from A to D the compound that	
(a) forms iodoform with iodine in the presence of alkali.	
A	(1)
B	
⊠ C	
(b) is chiral.	
Α	(1)
B	
⊠ C	
(c) reacts with Tollens' reagent.	(1)
A	(1)
B	
⊠ C	
(d) can be oxidized to form a ketone.	
Α	(1)
B	
⊠ C	
(Total for Question 1	l 2 = 4 marks)

Ethano action	oic acid, CH ₃ COOH, can be converted into ethanoyl chloride, CH ₃ COCl, by the of
🖾 A	phosphorus(V) chloride.
B	chlorine.
🖾 C	dilute hydrochloric acid.
D	concentrated hydrochloric acid.
	(Total for Question 13 = 1 mark)
Comp	pound, Q , gives an orange precipitate with 2,4-dinitrophenylhydrazine. ound Q is resistant to oxidation. duction, Q gives a product made up of a pair of optical isomers.
Which	of the following compounds could be compound Q ?
Δ	CH ₃ CH ₂ CH ₂ COCH ₃
B	CH ₃ CH==CHCH(OH)CH ₃
🖾 C	CH ₃ CH ₂ CH ₂ CH ₂ CHO
D 🛛	CH ₃ CH ₂ COCH ₂ CH ₃
	(Total for Question 14 = 1 mark)
	TOTAL FOR SECTION A = 20 MARKS
	A com Comp On rec Which

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

15 Citric acid is found in lemon juice.

The structure and formula of citric acid are shown below.

C₆**H**₈**O**₇

(a) In the presence of a small amount of moisture, citric acid reacts with sodium hydrogencarbonate as shown in the equation below.

 $C_6H_8O_7(s) + 3NaHCO_3(s) \rightarrow Na_3C_6H_5O_7(s) + 3CO_2(g) + 3H_2O(l)$

Use the structural formula of citric acid to explain why one mole of citric acid neutralizes three moles of sodium hydrogencarbonate.

(1)

(b) You will need to refer to the data booklet in the calculations which follow.

You should also use the values given below.

compound	S^{\leftrightarrow} / J mol ⁻¹ K ⁻¹
Na ₃ C ₆ H ₅ O ₇ (s)	200.5
C ₆ H ₈ O ₇ (s)	199.9

(i) Calculate the standard entropy change of the system, $\Delta S^{\ominus}_{system}$, for the following reaction at 298 K. Include a sign and units in your answer.

(2)

 $C_{_{6}}H_{_{8}}O_{_{7}}(s) + 3NaHCO_{_{3}}(s) \rightarrow Na_{_{3}}C_{_{6}}H_{_{5}}O_{_{7}}(s) + 3CO_{_{2}}(g) + 3H_{_{2}}O(I)$

(2)

(iii) Given that ΔH_{298}^{\ominus} for the reaction shown in (b)(i) is +70 kJ mol ⁻¹ , calculate the standard entropy change of the surroundings, $\Delta S_{surroundings}^{\ominus}$, for this reaction at 298 K. Include a sign and units in your answer.	(2)
(iv) Calculate the total entropy change, $\Delta S^{\ominus}_{ m total}$, for this reaction at 298 K.	(1)
(v) What does the sign of $\Delta S^{\ominus}_{ m total}$ suggest about this reaction at 298 K?	(1)
(Total for Question 15 = 9 m	arks)
	13 Turn over

16 Methanoic acid, HCOOH, is present in ant stings.

A scientist analyzed 25.0 cm³ of an aqueous solution of methanoic acid, solution **Z**, by titrating it with dilute sodium hydroxide, NaOH(aq).

- 20.0 cm³ of sodium hydroxide was required to neutralize the methanoic acid
- The equation for the neutralization of methanoic acid is

 $HCOOH(aq) + NaOH(aq) \rightarrow HCOONa(aq) + H_2O(I)$

(a) (i) Give the expression for $K_{w'}$ the ionic product of water.

(1)

(ii) The concentration of the sodium hydroxide, NaOH(aq), used in the titration was 0.00750 mol dm⁻³.

Calculate the pH of the sodium hydroxide solution.

 $[K_{w} = 1.00 \text{ x } 10^{-14} \text{ mol}^2 \text{ dm}^{-6}]$

(2)

(b) Use the equation for the reaction and the data from the titration to show that the concentration of the methanoic acid in solution **Z** was 6.00×10^{-3} mol dm⁻³.

(2)

(c)	Me	thanoic acid is a weak acid.	
	(i)	Explain the term weak acid .	(2)
Weak			
Acid			
	(ii)	The equation for the dissociation of methanoic acid in aqueous solution is shown below. HCOOH(aq) \Rightarrow HCOO ⁻ (aq) + H ⁺ (aq)	
		Write the expression for the acid dissociation constant, K_a , for methanoic acid.	(1)
			15 Turn over

*(iii)) At 298 K, the acid in ant stings has a concentration of 6.00 \times 10 ⁻³ mol dm ⁻³ and a pH of 3.01.	
	Calculate the value of K_a for methanoic acid at 298 K.	
	State clearly any assumptions that you have made.	
Calculatio		(4)
	11.	
Assumptio	on(s):	
	(Total for Question 16 = 12 mar	ks)
16		
	P 4 1 2 1 4 A 0 1 6 2 8	

	CH ₃ CH ₂ OH(I) =	\Rightarrow CH ₃ COOCH ₂ CH	$H_{3}(I) + H_{2}O(I)$	
(a) (i) Give the expression f	or K _c .			(1
(ii) An equilibrium was r	eached when t	he amounts of su	ubstances shown in the	2
table below were use Complete the table t equilibrium.	ed.			
equilibrium.				(2
Component	CH ₃ COOH(I)	CH ₃ CH ₂ OH(I)	CH ₃ COOCH ₂ CH ₃ (I)	H ₂ C
Initial amount / mol	0.40	0.30	0.00	0.
Equilibrium amount / mol	0.20			
(iii) Explain why K _c for thi	s reaction has	no units.		(1
(iii) Explain why K _c for thi (iv) Calculate the numeri		no units.		(1
		no units.		
		no units.		

.....

State the effect on the equilibrium position and the vector of ethelium and the	
State the effect on the equilibrium position and the rate of attainment of equilibrium if the concentration of the acid catalyst were to be increased.	
	(2)
(c) (i) Identify which bonds are broken and which bonds are made in the esterification reaction.	(2)
onds broken:	(2)
onds made:	
(ii) Evaluin why AU for this reaction is not evactly zero	
(ii) Explain why ΔH for this reaction is not exactly zero. (A calculation is not required.)	(1)
(d) (i) State the relationship between ΔS_{total} and the equilibrium constant, K, of a	
reaction.	(1)
18	

*(ii) Use entropy considerations and your answer to (d)(i) to predict any effect of an increase in temperature on the value of the equilibrium constant of a reaction for which ΔH is zero. Assume that ΔS_{system} does not change with temperature	
temperature.	(3)
(e) An alternative method for preparing ethyl ethanoate is to react ethanoyl chloride with ethanol.	2
(i) Give the equation for the reaction.	
	(1)
(ii) Draw the skeletal formula of ethyl ethanoate.	(1)
(iii) Ethanoyl chloride also reacts with concentrated ammonia. Draw the	
displayed formula of the organic product of this reaction.	(1)
	(1)

 (f) (i) Complete the equation below for the alkaline hydrolysis of ethyl ethanoate using sodium hydroxide. State symbols are not required. CH₃COOCH₂CH₃ + NaOH → (ii) Explain why the reaction in (f)(i) gives a better yield of the alcohol compared 	(1)
with acid hydrolysis of the ethyl ethanoate.	(1)
(Total for Question 17 = 19 m	arks)

P 4 1 2 1 4 A 0 2 0 2 8

BLANK PAGE

18 Bromate(V) ions, BrO₃⁻, oxidize bromide ions, Br⁻, in the presence of dilute acid, H⁺, as shown in the equation below.

 $BrO_3^{-}(aq) + 5Br^{-}(aq) + 6H^{+}(aq) \rightarrow 3Br_2(aq) + 3H_2O(l)$

Three experiments were carried out using different initial concentrations of the three reactants.

The initial rate of reaction was calculated for each experiment.

The results are shown in the table below.

Experiment number	[BrO ₃ ⁻ (aq)] / mol dm ⁻³	[Br ⁻ (aq)] / mol dm ⁻³	[H⁺(aq)] / mol dm⁻³	Initial rate of reaction / mol dm ⁻³ s ⁻¹
1	0.050	0.25	0.30	1.68 x 10 ⁻⁵
2	0.050	0.25	0.60	6.72 x 10 ⁻⁵
3	0.15	0.50	0.30	1.01 x 10 ⁻⁴

*(a) (i) This reaction is first order with respect to $BrO_3^{-}(aq)$. State, with reasons, including appropriate experiment numbers, the order of reaction with respect to

(5)

H⁺(aq)

Br^{_}(aq)

(ii) Write the rate equation for the reaction.

(1)

(iii) Use the data from experiment 1 and your answer to (a)(ii) to calculate the value of the rate constant. Include units in your answer.	(3)
(b) What evidence suggests that this reaction proceeds by more than one step?	(1)
(c) The initial rate of reaction was obtained from measurements of the concentration of bromine at regular time intervals. How is the initial rate of formation of bromine calculated from a concentration-time graph?	(2)
(Total for Question 18 = 12 ma	arks)
TOTAL FOR SECTION B = 52 MA	RKS

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

19 An organic compound, **X**, was analyzed in a laboratory.

(a) Compound **X** was found to have the following percentage composition by mass:

carbon, C = 54.5%hydrogen, H = 9.1%oxygen, O = 36.4%

(i) Use these data to calculate the empirical formula of compound **X**, showing your working.

(2)

P 4 1 2 1 4 A 0 2 5 2 8

P 4 1 2 1 4 A 0 2 6 2 8

The relative number of protons causing the peaks shown are: $J = 1$, $K = 1$, and $M = 3$.	L = 3
Use the information above to determine the structural formula of X .	
In your answer, you should refer to the number of peaks, their relative size their splitting patterns.	es and
	(7)
(Total for Question 19	= 18 marks)
TOTAL FOR SECTION C	
TOTAL FOR PAPER	= 90 MARKS

		-																												
	0 (8)	(18)	He He	netium 2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	Кr	krypton 36	131.3	Xe	xenon F.A	+C	[222]	Rn 20	86		ted								
٢	7			(17)	19.0	Ŀ	fluorine 9	35.5	บ	cnlorine 17	79.9	Br	bromine 35	126.9	_	iodine 5.2	CC 107.01	[210]	At	astatille 85		een report		175	Lu	lutetium 71	[257]	٦	lawrencium 103	
	9			(16)	16.0	0	oxygen R	32.1	ŝ	sultur 16	79.0	Se	selenium 34	127.6	Te	tellurium	70001	[209]	Po	84		116 have b Iticated		173	۲b	ytterbium 70	[254]	°N N	102	
	2			(15)	14.0	z	nitrogen 7	31.0	• ۲	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony E4		209.0	Bi	83		tomic numbers 112-116 hav but not fully authenticated		169	Tm	thulium 69	[256]	PW	mendelevium 101	
	4			(14)	12.0	U	carbon 6	28.1	Si	silicon 14	72.6	Ge	germanium 32	118.7	Sn	tin		207.2		16dU 82		Elements with atomic numbers 112-116 have been reported but not fully authenticated		167	Er	erbium 68	[253]	E E	termium 100	
	с			(13)	10.8	8	boron 5	27.0	AI	aluminium 13	69.7	Ga	gallium 31	114.8	L	indium	49	204.4	TI T	unauru 81		nents with		165		holmium 67	[254]	Es	einsteinium 99	
GIILS				·						(12)	65.4	Zn	zinc 30	112.4	pD	cadmium	40	200.6	Hg	111er cury 80		Elen		163	Dy	dysprosium 66	[251]	cť	californium einsteinium 98 99	
בופוווי										(11)	63.5	Cu	copper 29	107.9	Ag	silver	4/	197.0	Au	guia 79	[272]	Rg roentgenium	111	159		terbium 65	[245]	Bk	perketum 97	
										(10)	58.7	Ż	nickel 28	106.4	ЪЧ	palladium	40	195.1	Pt	ріаціпині 78	[271]	damstadtium roentgenium	110	157	PD	gadolinium 64	[247]	с С	anum 96	
c lad										(6)	58.9	ပိ	cobalt 27	102.9		Ę	C+	192.2	: التركينية التركينية	77		Mt meitnerium	109	152		europium 63	[243]	Am	amencium 95	
		1.0	H hydrogen	-						(8)	55.8	Fe	iron 26	101.1		ruth	44	190.2	Os	76	[277]	Hs hassium	108	150		samarium 62	[242]	Pu	94	
ם הפ										(2)	54.9	Mn	manganese 25	[98]	Ъс	molybdenum technetium	43	186.2	Re	75		Bh bohrium		[147]	Pm	promethium 61	[237]	dN	93 94	
_					mass	bol	number			(9)	52.0	ں د	Ę	95.9	Wo	molybdenum	42	183.8		T4	[266]	Sg seaborgium	106	144	PN	praseodymium neodymium promethium 59 60 61		D	uranıur 92	
				Key	relative atomic mass	atomic symbol	name atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	Νb	niobium 44	41	180.9	Ta	raiitatuii 73		Db dubnium		141	Pr	praseodymium 59	[231]	Ра	protactinium 91	
						ato	atomic			(4)	47.9	Ϊ	titanium 22	91.2	Zr	zirconium	40 1	178.5		72	[261]	Rf nutherfordium	104	140	Ce	cerium 58	232	μŢ	thorium 90	
										(3)	45.0	Sc	scandium 21	88.9	≻	yttrium 20	۶ <u>ر</u>	138.9	La*		[227]	Ac* actinium	89		SS					•
	2			(2)	0.6	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium	00	137.3	Ba	56	[226]	Ra radium	88		* Lanthanide series	* Actinide series				
	-			(1)	6.9	<u>ב:</u>	lithium 3	23.0		sodium 11	39.1	¥	potassium 19	85.5	Rb	rubidium 27	rubidium 37 132.9 Cs		CS S	55	[223]	Fr francium	87	 % Lanth * Actini 						

The Periodic Table of Elements

