

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
√and ≭	_
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, i dica ed by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong w rking
AG	Answer given
awrt	Anything which nds to
BC	By Calculator
DR	This question include the instruction: In this question you must show detailed reasoning.

2. Subject-specific Marking Instructions for A Level Mathematics A

- a Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

 If you are in any doubt whatsoever you should contact your Team Leader.
- c The following types of marks are available.

М

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specifical probound in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awared.

В

Mark for a correct result or statement independ nt of Method marks.

Ε

Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

 Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question evin if to it is is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-uestion
- Unless units are specifically requested, there is no penalty for wrong or missing units a long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres units in a larticular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark i lost for ach distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. The e is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more a temp s at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the oth rs. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- h For a genuine misreading (of numbers or symbols) whic is uch that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the ca didate's da a. A enalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the que tion. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are establised by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

(Questio	n	Answer	Marks	AO	Guidano	ee
1	(a)		$\sqrt{16a^4}$ or $4\sqrt{a^4}$ or $a\sqrt{a} \times 4\sqrt{a}$	M1	1.1	Any correct first step	
			$=4a^2$	A1	1.1		
				[2]			
1	(b)		$32b^{15}$	B2	1.1	B1 for 32 and B1 for <i>b</i> ¹⁵	
				[2]	1.1		
2	(a)		dy 5 4 20 3	M1	1.1a	For attempt a differentiation	Both indices decrease
			$\frac{5}{dx} = 5x^3 - 20x^3$ oe	A1	1.1		
			$\frac{dy}{dx} = 5x^4 - 20x^3 \text{ oe}$ $\frac{d^2y}{dx^2} = 20x^3 - 60x^2 \text{ oe}$	A1FT	1.1	FT th ir $\frac{dy}{dx}$	
				[3]			
2	(b)		When $x = 4$, $\frac{dy}{dx} = 5x^4 - 20x^3 = 5 \times 4^4 - 20 \times 4^3$	M1	11	Substitute into their $\frac{dy}{dx}$	
			= 0 hence there is a stationary point	A1 [2]	2.1		
2	(c)		When $x = 4$,	M1	1.1		
			$\frac{d^2y}{dx^2} = 20x^3 - 60x^2 = 20 \times 4^3 - 60 \times 4^2$				
			> 0 hence the stationary poin is a minimum	E1FT	2.2a	FT from their $\frac{d^2y}{dx^2}$ in part (i)	
				[2]			

	Questio	on Answer	Marks	AO	Guidano	ce
3	(a)	Total profit (or t) is large when price (or p) is high	B1	3.5b		
			[1]			
3	(b)	Passes through (0, 0) and (12, 0)	B1	3.1b		
		hence $t = kp(12-p)$				
		k = 200	B1	3.3	Or $t = 200 p (12 - p)$	
					Or $t = 200p(12-p)$ Or $t = 200(12p p^2)$	
			[2]			
3	(c)	6400 = 200p(12-p) oe	M1	3.4	6400 = (their k) p(12 - p)	
		$p^2 - 12x + 32 = 0$	A1FT	1.1	ny c rrect equation in form	FT (ii)
					$ap^2 + bp + c = 0$	
		p = 4, p = 8	A1FT	1	BC, but any method allowed	FT (ii)
		$4 \le p \le 8$			Allow 4 < p < 8	
		Price must be between £4 and £8	A1	3 4		
3	(d)	E.g. $p = 0$ implies giving book for free.	E1	3.2b	Valid comment about $p = 0$	
		Unrealistic. oe				
		E.g. When $p = 0$, $t = 0$; but t should be negativ				
		as would make a loss. Unrealistic				
		E.g. When $p = 12.1$, t is negati e. Possibly	E1	3.2b	Valid comment about $p = 12.1$	
		realistic as could make a loss if p et too h gh. oe				
			[2]			

	Questio	on	Answer	Marks	AO	Guidanc	e
4	(a)		$\frac{1}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x+2}$ so $A(x+2) + B(x-1) = 1$	M1	1.1	Attempt partial fractions with linear denominators, any method	
			so $A = \frac{1}{3}$ and $B = -\frac{1}{3}$ $\frac{\frac{1}{3}}{x-1} - \frac{\frac{1}{3}}{x+2}$ oe	A1 [2]	1.1		
	(b)		DR	M1	1.2	Attempt ntegr tion using ln	Must be seen
			\int_{0}^{3} 1	A1FT	1.1	Cor ect nte ral in any equivalent	May have no limits at this
			$\int_2^3 \frac{1}{(x-1)(x+2)} \mathrm{d}x$			form	stage
			$= \left[\frac{1}{3}\ln(x-1) - \frac{1}{3}\ln(x+2)\right]_2^3$	♦		FT their $A \ln(x-1) + B \ln(x+2)$	
				M1	1.1	Attempt to substitute 3 and 2 in their	Must be seen
						integral and subtract	
			$= \frac{1}{3} (\ln 2 - \ln 5 - \ln 1 + \ln 4)$	A1	1.1	All correct in any equivalent form	
			$=\frac{1}{3}\ln\frac{8}{5} \text{ or } \ln\frac{3\sqrt{8}}{5}$	A1	1.1	isw; must include one ln only	
				[5]			
5	(a)		$x^2 + y^2 = 4$	B1	1.1	soi	
			When $x=1$	E1	2.1	AG Check that Q lies on the circle	OR
			$1 + y^2 = 4 \Rightarrow y = \sqrt{3}$				B1 $x^2 + (\sqrt{3})^2 = 4 \Rightarrow x = 1$
			$y = \frac{1}{\sqrt{3}} (4 - 1) \Rightarrow y = \sqrt{3}$	E1	2.1	AG Check that Q lies on the parabola	B1 $\sqrt{3} = \frac{1}{\sqrt{3}} (4 - x^2) \Rightarrow x = 1$
				[3]			

	Question	Answer	Marks	AO	Guidano	ce
5	(b)	$\frac{1}{\sqrt{3}}\int_{-1}^{1} \left(4-x^2\right) \mathrm{d}x$	M1	3.1a	Attempt correct integral and limits; may be implied by answer 4.23(39)	OR M1 $\frac{1}{\sqrt{3}} \int_{0}^{1} (4 - x^{2}) dx =$ 2.1169
		$=\frac{22\sqrt{3}}{9}$	A1	1.1	BC	$\mathbf{A1} = \frac{11\sqrt{3}}{9}$
		Let N be the point $(1,0)$	B1	2.1		OR
		Area $OQN = \frac{\sqrt{3}}{2}$ oe or 0.866 (3 s f.)				B1 semi-circle: $y = \sqrt{4 - x^2}$
		$QON = \tan^{-1}\sqrt{3}$	M1	3.1a	Or in $\left(\frac{\sqrt{3}}{2}\right)$ o $\cos^{-1}\left(\frac{1}{2}\right)$ or $\frac{1}{3}\pi$ or	M1 attempt $\int_{1}^{1} \sqrt{4-x^2} dx$ by
					60°	substitution, e.g. $x = 2\sin u$
		$POQ = \frac{1}{3}\pi \text{ or } 60^{\circ}$	A1	1.1	M1A1 may be implied by seeing	M1 Use trigonometric
					n xt line	identity e.g. $\int_{-\frac{1}{6}\pi}^{\frac{1}{6}\pi} 4\cos^2 u du = \int_{-\frac{1}{6}\pi}^{\frac{1}{6}\pi} a\cos 2u + b$
		Area sector $POQ = \frac{1}{2} \times 2^2 \times \frac{1}{3} \pi$ oe $(= \frac{2}{3} \pi \text{ oe or } 2.09 \text{ (3 f.)})$	M	1.1	FT their angle <i>POQ</i>	$\mathbf{A1} \frac{2}{3} \pi + \sqrt{3}$
		Shaded area = $\frac{22\sqrt{3}}{9} - 2 \times \frac{\sqrt{3}}{2} - \frac{2}{3}\pi$ oe	M1	3.2a	Correct combination of their areas	M1 Shaded area $= \frac{22\sqrt{3}}{9} - \frac{2}{3}\pi - \sqrt{3} \text{ oe}$
		$=\frac{13\sqrt{3}}{9}-\frac{2}{3}\pi$ oe	A1	1.1		$\mathbf{A1} = \frac{13\sqrt{3}}{9} - \frac{2}{3}\pi$ oe
		<i>y</i> 3	[8]			9 3

	Questio	n	Answer	Marks	AO	Guidanc	e
6	(a)		$\frac{\mathrm{d}y}{\mathrm{d}t} = ky$	B1	3.1b		
			$\frac{1}{dt} - ky$				
				[1]			
6	(b)		$\frac{\mathrm{d}y}{\mathrm{d}t} = k\mathrm{d}t$	M1	1.1a	Attempt separation of variables	
			y				
			$[\ln y]_{4000}^{y} = k[t]_{0}^{t} \text{ or } \ln y = kt + c$	M1	1.1	Correct integrals and limits	
			$\ln \frac{y}{4000} = kt \text{ or } \ln 4000 = 0 + c$	A1	1.1	Correct su titution in correct	
			11 4000 - W 01 11 1000 = 0 + C			integ al	
			$y = 4000e^{kt}$	A1	1.1		
				[4]			
6	(c)		$4000e^{\frac{90}{365}\ln 1.06}$	M1	11	FT th ir part (ii)	
			=4057.89	A1	1.1	BC	
			100,100	[2]	1.1		
6	(d)		After 1 year, increased by factor 1.06				
				M1	3.1b	May be implied	
			Require further increase by factor $\frac{2}{1.06}$				
				M1	1.1	Attempt to form equation with 1.05	
						and 1.06	
			$e^{\frac{t}{365}\ln 1.05} = \frac{2}{1.06}$	A1	2.1	Correct equation	
			1.06				
			$\frac{t}{365}\ln 1.05 = \ln \frac{2}{1.06}$	M1	1.1	Attempt to remove logs	OR BC
			$t = \frac{365}{\ln 1.05} \times \ln \frac{2}{1.06}$				
			= 4750				
			Total number of days = 5115	A1	3.2a	isw	
				[5]			

	Questic	on	Answer	Marks	AO	Guidan	nce
7	(a)		$N(178, 8^2)$ and $X < 194$ oe	M1	1.1	soi	
			P(X < 194) = 0.977(249868)	A1	1.1	BC	
			$0.977249868^3 = 0.933 (3 \text{ s.f.})$	A1	1.1		
				[3]			
7	(b)		E.g. inflection - mean	M1	1.1a	E.g. 170 – 163	Figures are illustrative only
			E.g. $\frac{1}{2}$ (97.5th percentile – mean)			E.g. $\frac{1}{2}(176-163)$ E.g. $\frac{1}{6}(183-145)$	
			E.g. $\frac{1}{6}$ (99.7th percentile – 0.3th percentile)			E.g. $\frac{1}{6}(183-145)$	
			= 6 to 7	A1	1.1		
			E.g. Point of inflection is 1 sd from mean	E1	2.4	St ement matching method used	
			E.g. 95% of values within (approx) 2 sds of mean				
			E.g. Amost all within (approx) 3 sds of mean				
				[3]			
8	(a)		Symmetrical, high in middle, tails off at ends	B 1	2 4	Any two of these	Not just bell shaped
				[1]			
8	(b)	(i)	P(35 < m < 45) = 0.296	M1	3.4	Correct probability attempted	
			Predicted no. = 30	A1	1.1	Allow 29.6 or '29 or 30'	
				[2]			
8	(b)	(ii)	P(m < 25) = 0.0122	M1	3.4	Correct probability attempted	
			Predicted no. =1	A1	1.1	Allow 1.2 or '1 or 2'	
				[2]			
8	(c)	_	29.6 close to 29 and 1.2 close to 0	B1	3.5a	Both needed	OR B1 Model predicts some
			Hence model (could be) suitable				masses below 25 g, hence not
							suitable
				[1]			
8	(d)		E.g. Weather may cause different distribution	B1	3.5b	Any sensible reason why next year	
						may be different	
				[1]			

	Question	Answer	Marks	AO	Guidance
9	(a)	e.g. From the data given, the proportions of men who cycle to work show much more variability than women, with greater proportions of younger men cycling than older men.	E1	2.4	
9	(b)	The proportion decreased e.g. These workers were in the 40-44 group in 2011, which is a smaller proportion of the population than the 30-34 group in 2001.	B1 B1	2.2a 2.2b	
9	(c)	e.g. The age group is still approximately the same size in 2011 Very few (or no) males in this age group join the workforce between 2001 and 2011 Very few (or no) males in this age group leave the workforce between 2001 and 2011 The overall size of the workforce in this age group has not changed much The sample is representative of the whole population	B1	2.2b	For any relevant assumption

Q	uestion	Answer	Marks	AO	Guidano	ce
10		$H_0: \mu = 32.5$	B1	1.1	Must be stated in terms of parameter	
					values	
		$H_1: \mu \neq 32.5$ where μ is mean time spent by all	B 1	2.5	B1B0 for one error, e.g. undefined	Use of 34.5 B0B0
		customers			μ or 1-tail	
		$\overline{X} \sim N(32.5, \frac{82^2}{50})$ and $\overline{X} > 34.5$	M1	3.3	Stated or implied	OR
		(30)				M1 $\frac{34.5 - 32.5}{8.2 \div \sqrt{50}}$ allow
						without square root
		$P(\overline{X} > 34.5) = 0.0423$	A1	3.4	BC	A1 = 1.725
		Comparison with 0.025	A1	1.1	Allow comparison with 0.05 if	A1 Comparison with 1.96
					$H_1 \mu > 32.5$	(allow comparison with
			\limits			1.645 if $H_1: \mu > 32.5$)
		Do not reject H ₀	M1	1.1		
		Insufficient evidence that mean time in the library	A1FT	2 2b	In context, not definite;	
		has changed			FT their 0.0423, but not comparison	FT their 1.725, but not
			[7]		with 0.05	comparison with 1.645

	Questio	n	Answer	Marks	AO	Guidano	ce
11	(a)		Attempt to represent information e.g. by Venn diagram with x in centre and 3 other correct values in terms of x	B1	3.3	Any equivalent method	OR B1 $\frac{18}{30} + \frac{19}{30} + \frac{17}{30} - \left(\frac{8}{30} + \frac{9}{30} + \frac{11}{30}\right) \left(=\frac{26}{30}\right)$
			Attempt total (in terms of x) = 30	M1	3.4		M1 $1 - \frac{26}{30} = \frac{4}{30}$
			$x = 4$ so $n(S \cap H \cap T) = 4$	E1	1.1	Or the number d ing all three is 4. E0 for just $x = 4$	
				[3]			
11	(b)		$\frac{5}{9}$ oe	B1FT	2.2a	FT hei (i)	
				[1]			
11	(c)		$\frac{5}{9} \times \frac{19}{29}$	B1	2 2a		
			$\frac{4}{9} \times \frac{18}{29}$	B1	2.2a		
			$\frac{5}{9} \times \frac{19}{29} + \frac{4}{9} \times \frac{18}{29}$	M1	2 2a	All correct	
			$=\frac{167}{261}$ oe or 0.640 (3 s.f.)	A	1.1		
				[4			

Question	Answer	Marks	AO	Guidanc	e
12	p = 0.1511 to 4 s f.	B1	3.1b		OR
					B1 $p = 0.1511$ to 4 s f.
	X~Bin(10000, 0.1511)	M1	3.3	soi	B1 X~N(1511, 1283 ²)
	$np = 1511 \ np(1-p) = 1283$			Both; allow 3 s f.	
		M1	3.4	their' $np'+2 \times \sqrt{\text{their'} np(1-p)}$ '	M1 $P(X < m) = 0.975$
	$1511+1.96\times\sqrt{1283}$				Then use inverse normal to
	(or $1511 + 2 \times \sqrt{1283}$)			or their'np +1.96 × $\sqrt{\text{their'np}(1-p)}$ '	find
	(61 1311 + 2 × 41203)				
	=1581 (or 1583)	A1 FT	1.1	FT hei 3sf or better values	A1 FT 1581.203931 BC
	Minimum <i>m</i> is 1581	A1	1.1	oncl sion in context	A1 Minimum <i>m</i> is 1581
				Allow 1580 to 1585	
		[5]		Ÿ.	

(Question	Answer	Marks	AO	Guidan	ce
13	(a)	E.g. The only region with very low location on both variables is Region D which is therefore London.	E1	2.2a	Or any other valid reason to connect Region D with London	OR E1 for one region correct with good reasoning
		E.g. The region with the lowest standard deviation is Region B, so this is Wales	E1	2.2a	Or any other valid reason to connect Region B with Wales	OR E2 for two regions correct with good reasoning
		E.g. The only value where the other two differ much is sd of <i>driving</i> ; the wider spread on Region C including the outlier suggests that this is the Southwest, so Region A is the South East.	E1	2.2b	Careful argument involving mean and/or stand rd deviation	
12	(b)	E a No the data only shows that this I A has law	[3]	2.25	On any other valid avalenation of	Identifying the IA on the
13	(b)	E.g. No the data only shows that this LA has low proportions of car use for travelling to work. E.g. No, many LAs in Region D (London) have similar proportions and they are not small islands.	E1	2.2b	Or any other valid explanation of why the data given is insufficient to draw this conclusion	Identifying the LA as the Scilly Isles is not relevant; this requires information that is not in the supplied data.
13	(c)	E.g. On a large island, methods of travel to work are unlikely to be different to any other LA; people will still be travelling to work on the roads and provision of public transport will be similar to any other LA.	E1	2.2b	Or any other valid explanation of how large islands are likely to have similar patterns of method of travel to other LAs	Candidates may, but need not, identify the LA as Anglesey, but this is not sufficient to award the mark

Question		n	Answer	Marks	AO	Guidance	
14	(a)		$P(X > 39) = P(X = 40) = \frac{1}{860}(1+40)$	M1	1.1	Attempt at evaluating $P(X=40)$	
			$=\frac{41}{860}$	A1	1.1		
				[2]			
14	(b)		$P(X \text{ even}) = \frac{1}{860} (20 + (2 + 4 + 6 + + 40))$ oe	M1	3.1a	Attempt Σ probabilities of all even	Numerical sums may be
			, , , , , , , , , , , , , , , , , , , ,			values	evaluated BC throughout
			$=\frac{1}{860}\left(20+\frac{2+40}{2}\times20\right)$	A1	1.1	Correct expr ss n	
			$=\frac{22}{43}$	A1	1.1		
			$P(X = 2,4,6,8) = \frac{1}{860}(4+2+4+6+8)$	M1	1.1	Att mpt Σ probabilities for	
			$=\frac{12}{430}$ oe			X = 2,4,6 8	
			$\frac{P(X = 2, 4, 6, 8 \text{ and } X \text{ even})}{P(X \text{ even})} = \frac{P(X = 2, 4, 6, 8)}{P(X \text{ even})}$	A1	3 2a	their $P(X = 2, 4, 6, 8)$	
			P(X even) $P(X even)$			their $P(X \text{ even})$	
			$=\frac{12}{430} \div \frac{22}{43} = \frac{3}{55}$ oe or 0.0545 (3 s.f.)				
				B 1	2.1	For a clear solution allowing the line	
						of reasoning to be followed, with	
						each component of the conditional	
						probability found clearly	
				[6]			

Assessment Objectives (AO) Grid

Question	AO1	AO2	AO3 (PS)	AO3 (M)	Total
1a	2				2
1b	2				2
2a	3				3
2b	1	1			2
2c	1	1			2
3a				1	1
3b			1	1	2
3c	2			2	4
3d			2		2
4a	2				2
4b	5				5
5a	1	2			3
5b	4	1	3		8
6a			1		1
6b	4				4
6c	2				2
6d	2	1	2		5
7a	3				3
7b	2	1			3
8a		1		>	1
8bi	1			1	2
8bii	1			1	2
8c				1	1
8d				1	1
9a		1			1
9b		2			2
9c		1			1
10	3	2		2	7
11a	1			2	3
11b		1			1
11c	1	3			4
12	2		1	2	5
13a		3			3
13b		1			1
13c		1			1
14a	2				2
14b	3	1	2		6
Totals	50	24	12	14	100

PS = Problem Solving M = Modelling