Mark Scheme (Results) January 2012

GCE Chemistry (6CH05) Paper 01 General Principles of Chemistry II Transition Metals and Organic Nitrogen Chemistry
(including synoptic assessment)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our qualifications website at www.edexcel.com.

For information about our BTEC qualifications, please call 0844576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can contact our Science Subject Advisor directly by sending an email to ScienceSubjectAdvisor@EdexcelExperts.co.uk.

You can also telephone 08445760037 to speak to a member of our subject advisor team.
(If you are calling from outside the UK please dial +441204770696 and state that you would like to speak to the Science subject specialist).

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2012
Publications Code UA030269
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. Questions labelled with an asterix (*) are ones where the quality of your written communication will be assessed.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{2}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{3}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{4}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{5}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{6}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{8}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{9}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{2 0}$	A	$\mathbf{1}$

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a)}$	$3 d^{3} 4 s^{2}$ OR $4 s^{2} 3 d^{3}$		$\mathbf{1}$
$3 d^{5} 4 s^{1}$ OR $4 s^{1} 3 d^{5}$			
both must be correct.			
ALLOW Electron numbers could be on the line or as subscripts IGNORE case of letters			

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	Variable/varying/different/several/ more than one oxidation state /number	Each metal has a different oxidation number	$\mathbf{2}$
	Complex (ion formation) Treat Physical properties (if correct) including catalytic activity as neutral	Ligand exchange	

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	The following metals scores (2) marks with correct E value: Mg 1.96, Ce 1.92, U 1.39, Al 1.25, Mn 0.78, V 0.77, Zn 0.35	All other metals $0 / 2$	$\mathbf{2}$
	NOTE: Positive sign/unit not needed, but penalise negative value		
	The following metals score (1) mark with correct E value: Li 2.62, Rb 2.52, K 2.51, Ca 2.46,		
	Na 2.30, Cr 0.33, Fe 0.03		
	NOTE: Positive sign/unit not needed, but penalise negative value		

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii)	Not a redox process Chromate and dichromate both the same/no change in oxidation number (1)		$\mathbf{2}$
	contain Cr(VI) 6/6+	(1)	
	Mark independently (2)		
	Not redox and both contain $\mathrm{Cr}(\mathrm{VI})$ O/6+		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i v) ~}$	Forms two (dative/covalent) bonds/has two lone pairs (to the Transition Metal/ion) OR	'...to the molecule'	$\mathbf{1}$
	donates two pairs of electrons (to the Transition Metal/ion) Check answer to (v) if mark not awarded here		

Question	Acceptable Answers	Reject	Mark
21(b)(v)	Any two from Both have two nitrogen atoms with Ione pairs or implied or Far enough apart/longer chain in between in en (but not in hydrazine)/too close in hydrazine/hydrazine is too short/not as long or Dative bonds/lone pairs too close/repel in hydrazine OR for two marks Forms 5-membered ring (with en with no angle strain/stable) or Bond angles too acute/too much ring strain in hydrazine	$\mathrm{N}=\mathrm{N}$, or triple bond in hydrazine max 1 or if implies only en has lone pairs max 1	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i)}$	$-0.41(\mathrm{~V})$		$\mathbf{1}$
	$+1.33(\mathrm{~V})$	Both answers needed, with number and sign, for 1 mark IGNORE additional words	

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \text { *21(c)(ii) } \\ & \text { QWC } \end{aligned}$	Combines the equations to obtain $\begin{aligned} & 8 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Cr}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \\ & +14 \mathrm{H}^{+} \end{aligned}$ ALLOW $6 \mathrm{Cr}^{3+}+2 \mathrm{Cr}^{3+}$ instead of $8 \mathrm{Cr}^{3+}$ IGNORE state symbols even if wrong species (1), balance (1) $\begin{equation*} E_{\text {reaction }}^{\ominus}=-1.74 \mathrm{~V} \tag{1} \end{equation*}$ So not feasible on condition of negative value OR $6 \mathrm{Cr}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 8 \mathrm{Cr}^{3+}+$ $7 \mathrm{H}_{2} \mathrm{O}$ If fully correct $\begin{equation*} E_{\text {reaction }}^{\ominus}=+1.74 \mathrm{~V} \tag{1} \end{equation*}$ Disproportionation not feasible on condition of positive value but reject 'reaction is spontaneous' Other wrong equations IF $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ or Cr^{2+} on left Then +1.74 V If Cr^{3+} alone on the left Then -1.74 V and reaction not feasible	1 max for the equation if electrons are shown balanced or unbalanced	4

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	C 60/12 $=5$		$\mathbf{1}$
	H $8 / 1=8$		
	O 32/16 $=2$ ALLOW 1 mol $=100 \mathrm{~g}$ So $60 \% \mathrm{C}=\mathrm{C}_{5}$, etc		

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii)	$\mathbf{C}=\mathbf{C}$ Test : add bromine water $/ \mathrm{Br}_{2}(\mathrm{aq})$ Result: From yellow/brown/redbrown/orange to colourless/decolorises OR Test : add (acidified) potassium manganate((VII)) (solution) (1) Result: goes from pink/purple to colourless/brown Test : add alkaline potassium manganate((VII)) (solution) (1) Result: goes green COOH: Test : add $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3} /$ sodium carbpnate (solution) Result: Fizzes/bubbles/large volume neutralized	Bromine $/ \mathrm{Br}_{2} / \mathrm{Br}_{2}(\mathrm{I})$ clear for colourless clear for colourless $\mathrm{PCl}_{5} / \mathrm{LiAlH}_{4}$ as test $\mathrm{NaOH} / \mathrm{NaOH}(\mathrm{aq})$ colourless gas evolved	4

Question Number	Reject	Mark	
22(b)(i)	Explanation of precedence/priority in terms of atomic numbers/masses of the attached groups OR Highest-precedent/priority groups on each carbon are on opposite sides of the molecule E-/entgegen	Both $\mathrm{CH}_{3} /$ methyl groups on the same side so Z $(0 / 2)$	$\mathbf{2}$
Mark independently	(1)		

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	45 $\mathrm{COOH}^{+} / \mathrm{CO}_{2} \mathrm{H}^{+}$ 55 $\mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}$ OR $\mathrm{C}_{3} \mathrm{OH}_{3}{ }^{+}$ ALLOW Structural/displayed formulae of ions Absence of + charge (1 max)		2

Question Number	Acceptable Answers	Reject	Mark		
22(b)(iii)	If they say yes (0) (No) (Cleavage of the C-COOH bond in) both compounds gives fragment(s) of the same mass OR Both give the same peak(s)/fragment(s)	'No' on its own		\quad	B
:---					
Both give $\mathrm{CO}_{2} \mathrm{H}^{+} / \mathrm{C}_{4} \mathrm{H}_{7}^{+}$fragments					
The mark can be scored by referring					
to just one of the					
fragments/peaks/masses.	\quad				
:---					

Question Number	Acceptable Answers	Reject	Mark
$\begin{align*} & \text { *22(c)(i) } \tag{2}\\ & \text { QWC } \tag{2} \end{align*}$	C is $\mathrm{CH}_{3} \mathrm{CHO}$ (alone) D is $\mathrm{CH}_{3} \mathrm{COCOOH}$ (alone) so tiglic acid must be B tiglic acid mark can only be awarded if correct structures of either \mathbf{C} or \mathbf{D} are given. Any one of the following C must be an aldehyde D is a ketone Mention that $\mathrm{CH}_{3} \mathrm{CO}$ present in either/both compounds (because of formation of iodoform) If one or both of the structures are incorrect any of the last 3 marks can be awarded $\max 5$ If C and D are fully correct, but the wrong way round max 5	$\mathrm{CH}_{3} \mathrm{COH} 1$ max	6
Question Number	Acceptable Answers	Reject	Mark
22(c)(ii)	Doesn't distinguish E - isomer from Z isomer/geometric isomers (so no) OR Doesn't distinguish which sides of $\mathrm{C}=\mathrm{C}$ functional groups are on	Just isomers/ stereoisomers/ enatiomers	1

Question Number	Acceptable Answers	Reject	Mark
22(d)(i)	$\mathrm{CH}_{3} \mathrm{CHO}$ ACCEPT displayed or skeletal Step 1 (heat)using acidified potassium dichromate/or $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ distil (product as formed) conditional on dichromate Step 2 HCN with KCN OR KCN with H^{+}/acid OR KCN with (cold) $\mathrm{NaOH}(\mathrm{aq}) /$ /alkali (1) ALLOW HCN with $\mathrm{NaOH} /$ alkali For step 2 Ignore conditions e.g. any references to heat	$\mathrm{CH}_{3} \mathrm{COH}$ Manganate $\mathrm{VII} / \mathrm{KMnO}_{4}$ Reflux HCN alone	4
Question Number	Acceptable Answers	Reject	Mark
22(d)(ii)	Nucleophilic addition Any recognisable spelling of 'philic' and addition, either order Both words needed	Nutrophilic addition Any other or additional words	1

Question Number	Acceptable Answers	Reject	Mark
*22(d)(iii) QWC	Ethanal is planar (at the reaction site)	Intermediate is planar Square planar	$\mathbf{2}$
	OR Ethanal is a planar molecule (1) Attack (from CN to give the cyanohydrin) is (equally likely) from either side/above or below/from both sides (of the molecule) (so a racemic mixture is formed) Mark independently	Can attack carbocation from either side/any reference to SN1/SN2	(1)

Question Number	Acceptable Answers	Reject	Mark
22(d)(iv)	Receptors for the compound in the body are often stereospecific so only one stereoisomer is pharmacologically active OR Body recognises one (stereo)isomer ALLOW Only one (stereo)isomer is active OR One/the other isomer may be toxic/dangerous/harmful OR One isomer destroys body cells OR (Different) isomers have different biological/pharmacological/biochemical properties	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (a) (i)}$	Formula showing $-\mathrm{NH}_{3}{ }^{+}$and $-\mathrm{COO}^{-}$ $/-\mathrm{CO}_{2}^{-}$ Charges can be anywhere on functional group Rest of the molecule must be correct	$\mathbf{1}$	
	ALLOW displayed/part displayed formula		

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	Any two from	(1)	2
	High energy needed (to overcome)	strong ionic/electrostatic forces OR strong forces between oppositely charged ions/between positive and negative between different (zwitter)ions	any reference to intermolecular forces eg (strongly) polar/bond polarity

Question Number	Acceptable Answers	Reject	Mark
23(a)(iii)	 Correct peptide link Minimum two residues and extension to the rest of the molecule ALLOW $\begin{equation*} -\mathrm{NHCH}_{2} \mathrm{CONHCH}_{2} \mathrm{CO}- \tag{2} \end{equation*}$ Drawn the other way round, i.e. starting with the carbonyl group Brackets around outside with ' n ' ie (.....) $)_{n}$ Second mark depends on first		2

Question Number	Acceptable Answer	Reject	Mark
*23(b) QWC	Key Points KP1 Spot (of hydrolysate) on paper/tlc/thin layer chromatogram KP2 Marker spots of known aminoacids/measure R_{f} KP3 Run in (suitable) solvent/discussion of comparative solubilities in phases KP4 (Spray with) ninhydrin (and heat) [Stand alone mark] KP 5 Marker spots and the unknown spots correspond ALLOW Compare R_{f} values of marker spots with hydrolysate spots OR If 2-d chromatography used (2 different solvents run in two directions at right angles): KP1 Spot (of hydrolysate) on paper/tlc/thin layer chromatogram KP2 Run in (suitable) solvent in one direction KP3 Develop in suitable/different solvent at right angles OR discussion of comparative solubilities in phases KP4 Spray with ninhydrin (andheat) KP5 Compare hydrolysate spots with same experiment for known amino acids	Spot one amino acid/protein Water alone as solvent Spot one amino acid	5

	if column/GLC/GC used KP1 Put amino acid mixture (Hydrolysate) into column KP2 Separately known amino-acids into column KP3 Detect amino acids in effluent with Ninhydrin/mass spectrometry KP4 Measure retention times/ discussion of comparative solubilities in phases KP 5 Compare retention times	Spot one amino acid	

TOTAL FOR SECTION B = 50 MARKS

Section C

Question Number	Acceptable Answers	Reject	Mark
24(a)(i)	Not knowing the structure of the molecule (means that the reactions/reagents/reactants needed to make it are also unknown)	$\mathbf{1}$	
ALLOW Structure not known			

Question Number	Acceptable Answers	Reject	Mark
24(a)(ii)	Credit any reasonable arguments for example: First mark No longer any demand for madder/indigo OR Cheaper alternatives available (1) Second mark So the growing industries collapsed OR		$\mathbf{2}$
	no market for crops OR farmers had to grow alternative crops OR		
decreased employment			
OR			
ORonomic damage			
OR			
OR			

Question Number	Acceptable Answers	Reject	Mark
24(b)(i)	First mark Double bonds expected to react with bromine water turning it colourless OR	2	
	Bromine water remained yellow/orange/red/brown Second mark So benzene does not contain double bonds	(1)	
OR			
Double bonds not normal/not simply double bonds/any indication that double bonds are different			
OR His representation incorrect	(1)		

Question Number	Acceptable Answers	Reject	Mark
24(b)(ii)	The p/pi-/п/6 electrons (of carbon) OR (1) Π system Electrons are delocalised around the ring (1)	$\mathbf{3}$	
	Which gives the molecule greater stability/need more energy to break the bonds in benzene (and hence a less exothermic hydrogenation enthalpy) Allow it is more stable	Harder to break/disrupt [alone]	(1)

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	< 0° C/temperature too low: reaction too slow/insufficient energy to overcome activation energy	Will not take place	$\mathbf{2}$
> 10° C/temperature too high: diazonium ion decomposes/produces phenol	(1)		

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	 Positive charge can be on either N Cl^{-}may be given as well ALLOW circle in benzene ring and hydrogens/carbons displayed OR $---\mathrm{N}=\mathrm{N}^{+}$Is acceptable providing charge is on the end N	Positive charge on wrong N	1

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 24 \\ & (\mathrm{~d})(\mathrm{iii}) \end{aligned}$	Adds phenol in sodium hydroxide/ $\mathrm{OH}^{-} /$alkali ALLOW 2-naphthol in sodium hydroxide/ OH^{-}/alkali Correct structure for the $-\mathrm{N}=\mathrm{N}$ - bond between 2 benzene rings Remainder of molecule which is either: ALLOW anionic form of -OH OR if 2-naphthol is used it is:	Ignore position of OH group on the ring	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (e)}$	First mark		
$-\mathrm{SO}_{3}{ }^{-}$are solvated / hydrated			
Can be drawn with polar H of water		$\mathbf{2}$	
	OR Negative ion bonds with/attracted to water Second mark Nitrogen/oxygen atoms hydrogen-bonded (to water) Can be drawn attracted to ions water		

TOTAL FOR SECTION C = $\mathbf{2 0}$ MARKS
 TOTAL FOR PAPER = 90 MARKS

Further copies of this publication are available from International Regional Offices at www.edexcel.com/international

For more information on Edexcel qualifications, please visit www.edexcel.com

Alternatively, you can contact Customer Services at www.edexcel.com/ask or on + 441204770696

