

Mark Scheme (Results)

January 2015

Pearson Edexcel International GCSE in Chemistry (4CH0) Paper 2C

Pearson Edexcel Certificate in Chemistry (4CH0) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

January 2015 Publications Code UG040458 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Accept	Reject	Marks
1 (a)	D (a molecule)			1
(b)	A (covalent)			1
(c)	NH ₃	H ₃ N		1

Question number	Answer	Accept	Reject	Marks
2 (a) (i)	(solubility/it) increases as temperature increases	positive correlation	references to proportionality	1
(ii)	(solid) B			1
(b)	M1 – solid/crystals would form	precipitate for solid goes cloudy		1
	 M2 – (solid A) becomes less soluble (as the solution cools) / solubility (of solid A) decreases (as temperature decreases) 	reverse argument		1

Question number	Expected Answer		Accept	Reject	Marks
3 (a)	M1 P – iron ore / haematite ignore iron(III) oxide/Fe ₂ O ₃				2
	M2 Q - calcium silicate		slag / CaSiO ₃		
(b)	Type of reaction	Letter			3
	one that gives out heat	А			
	one that is a thermal decomposition	D ;			
	one that is a neutralisation	Ε;			
	one that forms a poisonous gas	В;			
(c)	M1- oxygen		air		2
	IGNORE O		O ₂		
	M2 – water		moisture/H ₂ O		

(d)	M1 zinc corrodes/reacts instead of iron / faster than iron	zinc loses electrons/is oxidised instead of iron	zinc rusts (instead of iron)	3
	M2 iron corrodes/reacts instead of tin / faster than tin	iron loses electrons/is oxidised instead of tin		
	lack of comparison with other metal max 1 from M1 and M2 ignore references to tin rusting	accept reverse arguments		
	M3 correct reference to order of reactivity of all three metals			

Total 10 marks

Question number	Answer	Accept	Reject	Marks
4(a)(i)	fermentation			1
(ii)	(to provide the) catalyst/enzyme/zymase	to increase the rate of the reaction		1
(b)(i)	M1 (test) – flame test	suitable description of flame test		2
	M2 (observation) – brick red / orange-red	red		
(ii)	copper(II) ions:	accept other suitable alkalis		5
	M1 (test) – (aqueous) sodium hydroxide / NaOH	suitable alternatives to precipitate	all other colours	
	M2 (observation) – blue precipitate ignore shades of blue			
	M2 dep on M1 or near miss of formula, eg $Na(OH)_2$			
	sulfate ions:	Ba(NO ₃) ₂	Reject sulfuric	
	M1 (test) – (dilute) hydrochloric acid / HCl		acid for M1 only	
	M2 (test) - (aqueous) barium chloride / BaCl ₂			
	M3 (observation) – white precipitate			
	M3 dep on M2 or near miss			

Question number	Answer	Accept	Reject	Mark s
4 (c)	 M1 (pressure) - 60-70 atm M2 (catalyst) - phosphoric acid / H₃PO₄ ignore references to concentration 	any pressure or range within this range phosphoric(V) acid	any other oxidation state	2
(d)	 M1 (Σ bonds broken) 348 + 412 + 360 (= 1120) M2 (Σ bonds made) 612 + 463 (= 1075) M3 M1 - M2 / Σ bonds broken - Σ bonds made M4 (+)45 (kJ/mol) Correct answer with no working scores 4 - 45 (kJ/mol) scores 3 	3231 3186		4

Question number	Answer	Accept	Reject	Marks
5 (a)	M1 temperature after27.1M2 temperature before18.8M3 temperature(+) 8.3changeRecorded temperatures correct but in wrong orderRecorded temperatures correct but in wrong orderscores 1 for M1 and M2M3 csq on M1 and M2	one trailing zero	more than one trailing zero	3
(b)	 M1 heat (energy) /thermal energy lost (to the atmosphere) ignore just energy lost M2 potassium hydroxide dissolves (very/too) slowly 	water evaporates potassium hydroxide does not completely dissolve potassium hydroxide is impure less than 3 g of potassium hydroxide is used more than 50 cm ³ of water is used		2

6 (a) Element Arrangement of electrons in atom Charge on ion ion ion ion ion 3 6 (a) Image: I	Question number		Ans	wer		Accept	Reject	Marks
Image: transformed basisImage: transform	6 (a)	Element	of electrons in	of electrons in	_			3
M1 - both arrangements correct M2 - charge on potassium ion M3 - charge on sulfide ion (b) (i) ions move/travel (to the electrodes) (iii) M1 (electrostatic) forces (of attraction) between (oppositely charged) ions (iii) M1 (electrostatic) forces (of attraction) between (oppositely charged) ions M2 are (relatively) strong ionic bonding / ionic bonding / ionic bonds M3 large amount of energy required to overcome the forces / separate the ions from the lattice break the bonds M2 dep on mention of forces (of attraction) or bonds break the bonds				2.8.8	(1)+/+1	K ⁽¹⁾⁺ / K ⁺¹		
M2 - charge on potassium ion M3 - charge on sulfide ionpositive for potassium and negative for sulfide for 1 markleast 				2.8.8	2-/-2	S ²⁻ / S ⁻²		
M3 - charge on sulfide ion and negative for sulfide for 1 mark and negative for sulfide for 1 mark (b) (i) ions move/travel (to the electrodes) ions are free to move / ions are mobile electrons free to move / ions are mobile electrons free to move / ions are mobile 1 (ii) M1 (electrostatic) forces (of attraction) between (oppositely charged) ions ionic bonding / ionic bonding / ionic bonds 3 M2 are (relatively) strong M3 large amount of energy required to overcome the forces / separate the ions from the lattice break the bonds Image: bo		M1 – <u>both</u> a	arrangements corre	ect				
(ii)M1 (electrostatic) forces (of attraction) between (oppositely charged) ionsions are mobileto move(iii)M1 (electrostatic) forces (of attraction) between (oppositely charged) ionsionic bonding / ionic bondsionic bonding / ionic3M2 are (relatively) strong M3 large amount of energy required to overcome the forces / separate the ions from the lattice M2 dep on mention of forces (of attraction) or bondsbreak the bonds44		_		I		and negative for sulfide		
 (ii) charged) ions M2 are (relatively) strong M3 large amount of energy required to overcome the forces / separate the ions from the lattice M2 dep on mention of forces (of attraction) or bonds 	(b) (i)	ions move/	travel (to the elect	rodes)		-		1
M3 large amount of energy required to overcome the forces break the bonds / separate the ions from the lattice break the bonds M2 dep on mention of forces (of attraction) or bonds break the bonds	(ii)	•	, ,	ttraction) between	(oppositely			3
/ separate the ions from the latticeM2 dep on mention of forces (of attraction) or bonds		M2 are (rela	atively) strong					
		-		=	e the forces	break the bonds		
Montion of covalent hands or intermolocular forces no M1		M2 dep on r	mention of forces (of attraction) or b	onds			
		Mention of c	covalent bonds or i	ntermolecular forc	es no M1			

Question number	Answer	Accept	Reject	Marks
7 (a)	$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$	multiples and fractions		1
(b)	M1 32 (of S) \rightarrow 80 (of SO ₃) (tonnes or g) M2 mass of SO ₃ = $\frac{80}{32} \times 80$ M3 = 200 (tonnes) M2 csq on M1 M3 csq on M2	M1 $n(S) = (n(SO_3)) = \frac{80 \times 10^6}{32} (mol) (= 2$ 500 000 (mol)) M2 mass of SO ₃ = M1 x 80 (= 200 000 000 (g)) M3 = M2 ÷ 10 ⁶ / 200 (tonnes)		3
(c)	Correct answer with no working scores 3 M1 64 (g) (of SO ₂) reacts with 12 (dm ³) (of O ₂) M2 (64 tonnes) reacts 12 x 10 ⁶ (dm ³) OR 1.2 x 10 ⁷ (dm ³) M2 csq on M1 Correct answer with no working scores 2	M1 $n(SO_2) = \frac{64 \times 10^6}{64}$ (mol) (= 10 ⁶ mol) M2 $\frac{M1}{2} \times 24 / 1.2 \times 10^7$ (dm ³) OR M1 mass of oxygen accept 1.2 x 10 ¹⁰ cm ³		2

Total 6 marks

Question number	Answer	Accept	Reject	Marks
8	 M1 – add (aqueous) chlorine to (aqueous) KBr M2 – (solution) turns orange 	yellow / brown	red	5
	M3 – add (aqueous) bromine to (aqueous) KI	red-brown / orange	yellow	
	M4 - (solution) turns brown	correct ionic equations		
	$\textbf{M5} - Cl_2 + 2KBr \rightarrow Br_2 + 2KCl$			
	OR			
	$Br_2 + 2KI \rightarrow I_2 + 2KBr$	accept $Cl_2 + 2KI \rightarrow I_2 + 2KCl$ if chlorine is added to potassium iodide		
	Ignore state symbols			

Question number	Answer	Accept	Reject	Marks
8	M1 – add (aqueous) bromine to (aqueous) KCl			5
	M2 – no change	orange / yellow / brown solution/colour produced only if it is clear that no reaction has occurred	red yellow	
	M3 - add (aqueous) iodine to (aqueous) KBr			
	M4 - no change / no change			
	If this route is chosen then M5 cannot be scored	brown / red-brown / orange solution/colour produced only if it is clear that no reaction has occurred		
			Tatal	_

Question number	Answer	Accept	Reject	Marks
9 (a)(i)	shifts to left	moves in the endothermic direction		1
(ii)	shifts to the right	shifts to the side of the reactants OWTTE		1 1
(iii)	impossible to know which shift is greater / impossible to know which change has the greater effect	moves in the exothermic direction shifts to the side of the products OWTTE shifts to the side with fewer (gas) moles/molecules OWTTE the (two) effects are opposing one another		
(b)	M1 – greater proportion of NO_2	more NO ₂ present equilibrium shifts to left		2
	 M2 – (increase of) temperature has a greater effect than (increase of) pressure 			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL