

Oxford Cambridge and RSA Examinations

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

**MEI STRUCTURED MATHEMATICS** STATISTICS 1, S1

4766

MARK SCHEME

| Qu          | Answer                                                                                                                                           | Mark               | Comment                      |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|--|--|--|--|
| Sectio      | n A                                                                                                                                              |                    |                              |  |  |  |  |
|             |                                                                                                                                                  |                    |                              |  |  |  |  |
| 1           | $P(A \cup B) = 1 - 0.3 = 0.7$                                                                                                                    | B1                 |                              |  |  |  |  |
|             | $P(A \cap B) = P(A) + P(B) - P(A \cup B)$                                                                                                        | M1                 |                              |  |  |  |  |
|             | = 0.5 + 0.35 - 0.7                                                                                                                               |                    |                              |  |  |  |  |
|             | = 0.15                                                                                                                                           | A1                 |                              |  |  |  |  |
|             |                                                                                                                                                  | [3]                |                              |  |  |  |  |
| 2(1)        | Length Exercise                                                                                                                                  |                    |                              |  |  |  |  |
| <b>2(i)</b> | Length Frequency                                                                                                                                 |                    |                              |  |  |  |  |
|             | 602 to 607 5                                                                                                                                     | B1                 | For 5 and 10                 |  |  |  |  |
|             | 607 to 609 6                                                                                                                                     | B1                 | For 6 and 12                 |  |  |  |  |
|             | 609 to 610 22                                                                                                                                    | 21                 |                              |  |  |  |  |
|             | 610 to 611 25                                                                                                                                    |                    |                              |  |  |  |  |
|             | 611 to 613 12                                                                                                                                    |                    |                              |  |  |  |  |
|             | 613 to 618 <u>10</u>                                                                                                                             |                    |                              |  |  |  |  |
|             | Total 80                                                                                                                                         | B1<br>[ <b>3</b> ] | For figures with total 80    |  |  |  |  |
| 2(ii)       | The range lies between 6 and 16.                                                                                                                 | B1<br>[1]          |                              |  |  |  |  |
| 2(iii)      | Mean is estimated as                                                                                                                             |                    |                              |  |  |  |  |
| 2(III)      | $\frac{\text{(Mid-point \times Frequency)}}{\sum}$                                                                                               |                    |                              |  |  |  |  |
|             | $\sum \frac{(\text{wind-point } \land \text{ Trequency})}{\text{Total}}$                                                                         | B1                 | Allow 1 mark for each of two |  |  |  |  |
|             | Total                                                                                                                                            |                    | Sensible statements          |  |  |  |  |
|             | The intervals are symmetrically placed either                                                                                                    | B1                 | Sensible statements          |  |  |  |  |
|             | side of 410 but in each case the frequency on                                                                                                    |                    |                              |  |  |  |  |
|             | the right is greater                                                                                                                             | [2]                |                              |  |  |  |  |
|             |                                                                                                                                                  |                    |                              |  |  |  |  |
| <b>3(i)</b> | Number of ways 4 may be chosen from 36                                                                                                           | M1                 | $^{36}C_4$ term              |  |  |  |  |
|             | 36 0 50005                                                                                                                                       |                    |                              |  |  |  |  |
|             | $= {}^{36}C_4 = 58905$                                                                                                                           | A1                 |                              |  |  |  |  |
|             |                                                                                                                                                  | [2]                |                              |  |  |  |  |
| 3(ii)       | P(All of same sex) = P(All male) + P(All female)                                                                                                 | M1                 |                              |  |  |  |  |
|             | $=\frac{16}{36}\times\frac{15}{35}\times\frac{14}{34}\times\frac{13}{33}+\frac{20}{36}\times\frac{19}{35}\times\frac{18}{34}\times\frac{17}{33}$ | M1                 | Attempt at correct numbers   |  |  |  |  |
|             | $36 \ 35 \ 34 \ 33 \ 36 \ 35 \ 34 \ 33$<br>= 0.113 (3 s.f.)                                                                                      | A1                 |                              |  |  |  |  |
|             | - 0.113 (3 8.1.)                                                                                                                                 | [ <b>3</b> ]       | cao                          |  |  |  |  |
|             |                                                                                                                                                  |                    | <u> </u>                     |  |  |  |  |

| Qu               | Answer                                                                                                        | Mark                           | Comment                                          |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------|--|--|--|--|
| Sectio           | n A (continued)                                                                                               |                                |                                                  |  |  |  |  |
| <b>4</b> (i)     | Median = 34<br>Upper quartile = 56<br>Lower quartile = 26                                                     | B1<br>B1                       | Median<br>Quartiles                              |  |  |  |  |
| 4(ii)            | 20 28 34 56 90                                                                                                | [2]<br>B1<br>B1<br>[2]         | Box<br>Whiskers                                  |  |  |  |  |
| <b>4(iii)</b>    | Positive skew                                                                                                 | B1<br>B1<br>B1<br>[ <b>3</b> ] | 1 mark for skew<br>1 mark for positive<br>Sketch |  |  |  |  |
| 5(i)(A)          | $\overline{x} = \frac{50}{10} = 5$                                                                            | B1                             |                                                  |  |  |  |  |
| 5(i)( <i>B</i> ) | $\sum (x - \overline{x})^2 = 858 \Rightarrow rmsd = \sqrt{\frac{858}{10}} = 9.26$                             | B1                             | For 858 seen                                     |  |  |  |  |
| 5(i)( <i>C</i> ) | $s = \sqrt{\frac{858}{9}} = 9.76$                                                                             | B1<br>B1<br>[4]                | cao<br>For division by 9                         |  |  |  |  |
| 5(ii)            | $\overline{x} + 2s = 5 + 2 \times 9.76 = 24.52$<br>Since $32 > 24.52$ , $32$ may be classified as an outlier. | M1<br>E1<br>[ <b>2</b> ]       |                                                  |  |  |  |  |
| 5(iii)           | Without the 32,<br>$\overline{x} = \frac{18}{9} = 2, \ s = \sqrt{\frac{48}{8}} = 2.45$                        | B1                             | One mark both                                    |  |  |  |  |
|                  | Both the mean and standard deviation are much reduced                                                         | B1<br>[ <b>2</b> ]             |                                                  |  |  |  |  |

| Qu                    | Answer                                                                           | Mark               | Comment                          |  |  |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------|--------------------|----------------------------------|--|--|--|--|--|--|
| Section A (continued) |                                                                                  |                    |                                  |  |  |  |  |  |  |
| 6(i)                  | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                           | M1                 | Tabulation (SO1)                 |  |  |  |  |  |  |
|                       | Now $k + \frac{1}{2}k + \frac{1}{3}k + \frac{1}{4}k = 1$                         | M1                 |                                  |  |  |  |  |  |  |
|                       | $\Rightarrow k = \frac{12}{25} = 0.48$                                           | A1                 | Value of <i>k</i>                |  |  |  |  |  |  |
|                       |                                                                                  | [3]                |                                  |  |  |  |  |  |  |
| <b>6(ii)</b>          | $E(X) = 1 \times 0.48 + 2 \times 0.24 + 3 \times 0.16 + 4 \times 0.12$<br>= 1.92 | B1                 | $E(X)$ (provided $\sum p=1$ )    |  |  |  |  |  |  |
|                       | $E(X^{2}) = 1 \times 0.48 + 4 \times 0.24 + 9 \times 0.16 + 16 \times 0.12$      | M1                 | $\mathbf{E}(X^2) \ (\sum p = 1)$ |  |  |  |  |  |  |
|                       | Hence $Var(X) = E(X^2) - [E(X)]^2$<br>= 4.8-1.92 <sup>2</sup>                    | M1                 | Positive variance                |  |  |  |  |  |  |
|                       | = 4.8 - 3.6864<br>= 1.1136 <i>or</i> 1.11 (to 3 s.f.)                            | A1<br>[ <b>4</b> ] | сао                              |  |  |  |  |  |  |
|                       | 1                                                                                | I                  | Section A Total: 36              |  |  |  |  |  |  |

| Qu      | Answer                                                                                                                 | Mark                           | Comment                                                                                                        |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
| Section | n B                                                                                                                    | 1                              |                                                                                                                |  |  |  |
| 7(i)    | 0.5W                                                                                                                   |                                |                                                                                                                |  |  |  |
|         | $0.5 \qquad \mathbf{W} \qquad \underbrace{0.5}_{0.5} \qquad \mathbf{F}$                                                |                                |                                                                                                                |  |  |  |
|         | $0.5 \qquad \mathbf{W} \qquad 0.5 \qquad \mathbf{F} \qquad \underbrace{0.2 \qquad \mathbf{W}}_{0.8 \qquad \mathbf{F}}$ |                                |                                                                                                                |  |  |  |
|         | $0.5 \qquad 0.2 \qquad W \qquad 0.5 \qquad W \qquad 0.5 \qquad F$                                                      |                                |                                                                                                                |  |  |  |
|         | $\mathbf{F} \underbrace{0.8}_{0.8} \mathbf{F} \underbrace{0.2}_{0.8} \mathbf{W}$                                       | B1<br>B1<br>B1<br>B1<br>[4]    | Overall shape<br>1 <sup>st</sup> pair branches<br>2 <sup>nd</sup> set branches<br>3 <sup>rd</sup> set branches |  |  |  |
| 7(ii)   | P(same weather on Tuesday, Wednesday, and Thursday)                                                                    | M1                             | 2 triple products                                                                                              |  |  |  |
|         | $= 0.5^3 + 0.5 \times 0.8^2 = 0.445$                                                                                   | M1<br>A1<br>[ <b>3</b> ]       | Sum of products<br>cao                                                                                         |  |  |  |
| 7(iii)  | P(wet Thursday)                                                                                                        | M1<br>A1                       | 4 triples<br>Correct triples                                                                                   |  |  |  |
|         | $= 0.5^{3} + 0.5^{2} \times 0.2 + 0.5^{2} \times 0.2 + 0.5 \times 0.8 \times 0.2$<br>= 0.305                           | M1<br>A1<br>[ <b>4</b> ]       | Sum of products<br>cao                                                                                         |  |  |  |
| 7(iv)   | P(fine Tuesday and wet Thursday)<br>= $0.5 \times 0.2 \times 0.5 + 0.5 \times 0.8 \times 0.2$<br>= $0.13$              | M1<br>A1<br>A1<br>[ <b>3</b> ] | 2 triples                                                                                                      |  |  |  |
| 7(v)    | P(fine Tuesday   wet Thursday)<br>$P(A \cap B)$                                                                        |                                |                                                                                                                |  |  |  |
|         | Use of $P(A B) = \frac{P(A \cap B)}{P(B)}$                                                                             | M1                             |                                                                                                                |  |  |  |
|         | $=\frac{0.13}{0.305}$                                                                                                  | A1                             | Numerator and denominator                                                                                      |  |  |  |
|         | $= 0.426 (3 \text{ s.f.}) \text{ or } \frac{26}{61}$                                                                   | A1                             | cao                                                                                                            |  |  |  |
|         | -                                                                                                                      | [3]                            |                                                                                                                |  |  |  |

| Qu                       | Answer                                                      | Mark | Comment                        |
|--------------------------|-------------------------------------------------------------|------|--------------------------------|
| Sectior                  | n B (continued)                                             |      |                                |
|                          |                                                             |      |                                |
| 8(i)(A)                  | P(no lorries have defective tyres)                          | M1   |                                |
|                          | $=0.83^{6}=0.327$ (3 s.f.) $=0.33$ (2 s.f.)                 | A1   | cao                            |
|                          |                                                             | [2]  |                                |
| 8(i)( <i>R</i> )         | P(exactly 2 lorries have defective tyres)                   | M1   | For $0.17^2 \times 0.83^4$     |
| <b>U</b> (I)( <b>D</b> ) | $= {}^{6}C_{2} \times 0.17^{2} \times 0.83^{4}$             | M1   | For ${}^{6}C_{2} \times$       |
|                          | = 0.206  (to  3  s.f.) = 0.21  (2 s.f.)                     | A1   | cao                            |
|                          | 0.200 (10 5 5.1.) 0.21 (2 5.1.)                             | [3]  |                                |
| 8(i)(C)                  | P(1 lorry has defective tyres)                              |      |                                |
| -(-)(-)                  | $= {}^{6}C_{1} \times 0.17 \times 0.83^{5}$                 |      |                                |
|                          | = 0.402 (to 3 s.f.)                                         | B1   |                                |
|                          | P(more than 2 lorries have defective tyres)                 |      |                                |
|                          | =1 - (0.327 + 0.402 + 0.206)                                | M1   |                                |
|                          | = 0.065(5)                                                  | A1   |                                |
|                          |                                                             | [3]  |                                |
| 8(ii)                    | $H_0: P = 0.2$                                              | B1   | Null hypothesis                |
|                          | $H_1: P < 0.2$                                              | B1   | Alternative hyp.               |
|                          | H <sub>1</sub> takes this form because we are looking for a |      |                                |
|                          | <i>reduction</i> in the proportion of defective tyres.      | E1   | Explanations                   |
|                          |                                                             | [3]  |                                |
| <b>8(iii)</b>            | Let $X \sim B(18, 0.2)$                                     |      |                                |
| - ( )                    | $P(X \le 1) = 0.0991$                                       | B1   | Tail probablity                |
|                          | Since $0.0991 > 0.05$ , do not reject H <sub>0</sub>        |      | 1 5                            |
|                          | $(or \operatorname{accept} H_0)$                            | M1   | Comparison                     |
|                          | There is not enough evidence to suggest that                |      | companion                      |
|                          | there has been a (significant) reduction in the             |      |                                |
|                          | proportion of defective tyres or 'campaign                  |      |                                |
|                          | appears to have been successful'                            | A1   | Conclusion in words            |
|                          |                                                             | [4]  |                                |
| 8(iv)                    | The critical value for the test is 0,                       | B1   | Critical value                 |
|                          | since $P(X \le 0) [= 0.018] < 0.05$                         | B1   | Reason                         |
|                          |                                                             | [2]  |                                |
| 8(v)                     | The opposite conclusion would be reached                    |      |                                |
| 0(1)                     | provided the significance level was above                   |      |                                |
|                          | 9.91%, e.g. 10%                                             | B1   | Suitable percentage            |
|                          |                                                             | E1   | Explicit comparison with 9.91% |
|                          |                                                             | [2]  |                                |
|                          |                                                             |      | Section B Total: 36            |
|                          |                                                             |      | Total: 72                      |

| AO | Range  | Total | Question Number |   |   |   |   |   |    |    |
|----|--------|-------|-----------------|---|---|---|---|---|----|----|
|    |        |       | 1               | 2 | 3 | 4 | 5 | 6 | 7  | 8  |
| 1  | 14-22  | 19    | 1               | 1 | 2 | 2 | 1 | 4 | 4  | 4  |
| 2  | 14-22  | 18    | 1               | 2 | 1 | 3 | 1 | 3 | 4  | 3  |
| 3  | 18-26  | 21    | -               | - | 2 | - | 2 | - | 8  | 9  |
| 4  | 7-15   | 8     | -               | 3 | - | 2 | 2 | - | -  | 1  |
| 5  | 3-11   | 6     | 1               | - | - | - | 2 | - | 1  | 2  |
|    | Totals | 72    | 3               | 6 | 5 | 7 | 8 | 7 | 17 | 19 |