| Vrite your name here Surname            | Ot                     | her names                           |       |
|-----------------------------------------|------------------------|-------------------------------------|-------|
| Edexcel GCE                             | Centre Number          | Candidate N                         | umber |
| Chomictr                                |                        |                                     |       |
| Advanced Subsidi<br>Unit 1: The Core Pr | ary                    | emistry                             |       |
|                                         | ary<br>rinciples of Ch | emistry<br>Paper Reference<br>6CH01 |       |

## Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

# Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (\*) are ones where the quality of your written communication will be assessed
   you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

# Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.





Turn over 🕨



|    | SECTION A                                                                                                                                                                                                                                                                                                                     |                                                                 |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| or | Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box $\boxtimes$ . If you change your mind, put a line through the box $\boxtimes$ and then mark your new answer with a cross $\boxtimes$ . |                                                                 |  |  |
| 1  | When aqueous solutions of barium chloride and potassium sulfate are mixed, a white precipitate forms. The ionic equation for the reaction is                                                                                                                                                                                  |                                                                 |  |  |
|    | A                                                                                                                                                                                                                                                                                                                             | $K^+(aq) + Cl^-(aq) \rightarrow KCl(s)$                         |  |  |
|    | B                                                                                                                                                                                                                                                                                                                             | $K^{2+}(aq) + 2CI^{-}(aq) \rightarrow KCI_{2}(s)$               |  |  |
|    | 🛛 C                                                                                                                                                                                                                                                                                                                           | $Ba^+(aq) + SO_4^-(aq) \rightarrow BaSO_4(s)$                   |  |  |
|    | D 🛛                                                                                                                                                                                                                                                                                                                           | $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$             |  |  |
|    |                                                                                                                                                                                                                                                                                                                               | (Total for Question 1 = 1 mark)                                 |  |  |
| 2  | Which                                                                                                                                                                                                                                                                                                                         | of the following processes has the highest atom economy?        |  |  |
|    | A                                                                                                                                                                                                                                                                                                                             | Making poly(ethene) from ethene.                                |  |  |
|    | B                                                                                                                                                                                                                                                                                                                             | Making ethene from eicosane, C <sub>20</sub> H <sub>42</sub> .  |  |  |
|    | 🖾 C                                                                                                                                                                                                                                                                                                                           | Making chloromethane from methane.                              |  |  |
|    | D 🛛                                                                                                                                                                                                                                                                                                                           | Making magnesium chloride from magnesium and hydrochloric acid. |  |  |
|    |                                                                                                                                                                                                                                                                                                                               | (Total for Question 2 = 1 mark)                                 |  |  |
| 3  | How r                                                                                                                                                                                                                                                                                                                         | nany molecules are present in 16 g of oxygen gas, $O_2(g)$ ?    |  |  |
|    | $[Avogadro constant = 6 \times 10^{23} \text{ mol}^{-1}]$                                                                                                                                                                                                                                                                     |                                                                 |  |  |
|    | A 🖾                                                                                                                                                                                                                                                                                                                           | 96 × 10 <sup>23</sup>                                           |  |  |
|    | B                                                                                                                                                                                                                                                                                                                             | $12 \times 10^{23}$                                             |  |  |
|    | 🖾 C                                                                                                                                                                                                                                                                                                                           | 6 × 10 <sup>23</sup>                                            |  |  |
|    | D 🛛                                                                                                                                                                                                                                                                                                                           | $3 \times 10^{23}$                                              |  |  |
|    |                                                                                                                                                                                                                                                                                                                               | (Total for Question 3 = 1 mark)                                 |  |  |
|    |                                                                                                                                                                                                                                                                                                                               |                                                                 |  |  |
|    |                                                                                                                                                                                                                                                                                                                               |                                                                 |  |  |
|    |                                                                                                                                                                                                                                                                                                                               |                                                                 |  |  |
|    |                                                                                                                                                                                                                                                                                                                               |                                                                 |  |  |
|    |                                                                                                                                                                                                                                                                                                                               |                                                                 |  |  |



| 4 | Nickel(II) sulfate is prepared by adding an excess of nickel(II) carbonate to 0.010 mol of dilute sulfuric acid.                                                                         |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | $NiCO_{3}(s) + H_{2}SO_{4}(aq) \rightarrow NiSO_{4}(aq) + H_{2}O(I) + CO_{2}(g)$                                                                                                         |  |  |
|   | Solid nickel(II) sulfate crystals are produced with a 20% yield. How many moles of nickel(II) sulfate crystals are obtained?                                                             |  |  |
|   | ▲ 0.001                                                                                                                                                                                  |  |  |
|   | <b>B</b> 0.002                                                                                                                                                                           |  |  |
|   | C 0.010                                                                                                                                                                                  |  |  |
|   | ☑ D 0.050                                                                                                                                                                                |  |  |
| _ | (Total for Question 4 = 1 mark)                                                                                                                                                          |  |  |
| 5 | When 0.635 g of copper (relative atomic mass, RAM = 63.5) is added to an excess of silver nitrate solution, 2.158 g of silver (RAM = 107.9) form. The ionic equation for the reaction is |  |  |
|   | $\square$ A Cu(s) + Ag <sup>2+</sup> (aq) $\rightarrow$ Cu <sup>2+</sup> (aq) + Ag(s)                                                                                                    |  |  |
|   | $\square$ <b>B</b> Cu(s) + Ag <sup>+</sup> (aq) $\rightarrow$ Cu <sup>+</sup> (aq) + Ag(s)                                                                                               |  |  |
|   | $\square$ <b>C</b> 2Cu(s) + Ag <sup>2+</sup> (aq) $\rightarrow$ 2Cu <sup>+</sup> (aq) + Ag(s)                                                                                            |  |  |
|   | $\square$ <b>D</b> Cu(s) + 2Ag <sup>+</sup> (aq) $\rightarrow$ Cu <sup>2+</sup> (aq) + 2Ag(s)                                                                                            |  |  |
| _ | (Total for Question 5 = 1 mark)                                                                                                                                                          |  |  |
| 6 | In an experiment to measure the enthalpy change of a reaction involving gases, which of the following conditions must always be kept constant?                                           |  |  |
|   | A Pressure                                                                                                                                                                               |  |  |
|   | B Temperature                                                                                                                                                                            |  |  |
|   | C Volume                                                                                                                                                                                 |  |  |
|   | <b>D</b> Temperature and pressure                                                                                                                                                        |  |  |
|   | (Total for Question 6 = 1 mark)                                                                                                                                                          |  |  |
|   |                                                                                                                                                                                          |  |  |
|   |                                                                                                                                                                                          |  |  |
|   |                                                                                                                                                                                          |  |  |
|   |                                                                                                                                                                                          |  |  |
|   |                                                                                                                                                                                          |  |  |
|   |                                                                                                                                                                                          |  |  |
|   |                                                                                                                                                                                          |  |  |



7 In an endothermic reaction in aqueous solution, which of the following is correct?

|                      | Temperature | Sign of enthalpy change |  |
|----------------------|-------------|-------------------------|--|
| A                    | Increases   | Positive                |  |
| B                    | Increases   | Negative                |  |
| CDecreasesDDecreases |             | Positive                |  |
|                      |             | Negative                |  |

### (Total for Question 7 = 1 mark)

**8** The enthalpy change for the reaction to form hydrated sodium thiosulfate crystals cannot be measured directly.

The following Hess cycle can be used.



The enthalpy change for the reaction,  $\Delta H_r$ , is equal to

 $\square$  **A**  $\Delta H_1$  +  $\Delta H_2$ 

$$\square \mathbf{B} \quad \Delta H_1 - \Delta H_2$$

$$\square \mathbf{C} - \Delta H_1 - \Delta H_2$$

 $\square$  **D**  $-\Delta H_1 + \Delta H_2$ 

(Total for Question 8 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.



|            | <sup>3</sup> of 2 mol dm <sup>-3</sup> sodium hydroxide solution, the temperature change is $\Delta T$ .<br>HCl(aq) + NaOH(aq) $\rightarrow$ NaCl(aq) + H <sub>2</sub> O(l) |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            |                                                                                                                                                                             |  |  |
| A          | When the reaction is repeated with 50 cm <sup>3</sup> of each solution, the temperature change is                                                                           |  |  |
|            | $\Delta T$                                                                                                                                                                  |  |  |
| B          | $5 \times \Delta T$                                                                                                                                                         |  |  |
| 🖾 C        | $\frac{1}{5} \times \Delta T$                                                                                                                                               |  |  |
|            | 5 $10 \times 2 \times \Delta T$                                                                                                                                             |  |  |
|            | (Total for Question 9 = 1 mark)                                                                                                                                             |  |  |
|            | tope of an element, atomic number z, has mass number 2z + 4. How many ons are in the nucleus of the element?                                                                |  |  |
| Α 🛛        | z + 4                                                                                                                                                                       |  |  |
| B          | z + 2                                                                                                                                                                       |  |  |
| 🖾 C        | Z                                                                                                                                                                           |  |  |
| 🖾 D        | 4                                                                                                                                                                           |  |  |
|            | (Total for Question 10 = 1 mark)                                                                                                                                            |  |  |
| I When     | an Al <sup>4+</sup> ion is formed from an Al atom, the fourth electron is lost from the                                                                                     |  |  |
| <b>⋈</b> A | 1s sub-shell.                                                                                                                                                               |  |  |
| B          | 2s sub-shell.                                                                                                                                                               |  |  |
| 🖾 C        | 2p sub-shell.                                                                                                                                                               |  |  |
| 🖾 D        | 3s sub-shell.                                                                                                                                                               |  |  |
|            | (Total for Question 11 = 1 mark)                                                                                                                                            |  |  |
| Use thi    | is space for any rough working. Anything you write in this space will gain no credit.                                                                                       |  |  |



| 12 | <b>12</b> Metals are good conductors of electricity because                                           |                                                                                                                                                |  |  |
|----|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 12 | A metal atoms are arranged in a regular lattice.                                                      |                                                                                                                                                |  |  |
|    |                                                                                                       |                                                                                                                                                |  |  |
|    | B                                                                                                     | metal ions are very close to each other.                                                                                                       |  |  |
|    | <b>⊠</b> C                                                                                            | metal ions are free to move through the lattice.                                                                                               |  |  |
|    | D                                                                                                     | electrons are free to move through the lattice.                                                                                                |  |  |
| _  | (Total for Question 12 = 1 mark)                                                                      |                                                                                                                                                |  |  |
| 13 | <b>13</b> Which of the following statements is evidence for the existence of ions in ionic compounds? |                                                                                                                                                |  |  |
|    | A 🛛                                                                                                   | lonic compounds, in the solid state, conduct electricity.                                                                                      |  |  |
|    | ⊠ B                                                                                                   | When <b>any</b> ionic compound in solution is electrolysed, the migration of ions can be seen.                                                 |  |  |
|    | ⊠ C                                                                                                   | In electron density maps for ionic compounds, there is no single line representing electron density that surrounds both cations and anions.    |  |  |
|    | ⊠ D                                                                                                   | In electron density maps for ionic compounds, there are some single lines representing electron density that surround both cations and anions. |  |  |
| _  |                                                                                                       | (Total for Question 13 = 1 mark)                                                                                                               |  |  |
| 14 | White                                                                                                 | phosphorus consists of                                                                                                                         |  |  |
|    | A 🖂                                                                                                   | a giant structure of atoms.                                                                                                                    |  |  |
|    | B                                                                                                     | a giant structure of ions.                                                                                                                     |  |  |
|    | 🖾 C                                                                                                   | small molecules.                                                                                                                               |  |  |
|    | D                                                                                                     | single atoms.                                                                                                                                  |  |  |
|    |                                                                                                       | (Total for Question 14 = 1 mark)                                                                                                               |  |  |
|    |                                                                                                       |                                                                                                                                                |  |  |
| 15 |                                                                                                       | rs have different                                                                                                                              |  |  |
|    | Α 🖾                                                                                                   | empirical formulae.                                                                                                                            |  |  |
|    | B                                                                                                     | molecular formulae.                                                                                                                            |  |  |
|    | ⊠ C                                                                                                   | skeletal formulae.                                                                                                                             |  |  |
|    | D                                                                                                     | molar masses.                                                                                                                                  |  |  |
| _  |                                                                                                       | (Total for Question 15 = 1 mark)                                                                                                               |  |  |
|    |                                                                                                       |                                                                                                                                                |  |  |
|    |                                                                                                       |                                                                                                                                                |  |  |
|    |                                                                                                       |                                                                                                                                                |  |  |
|    |                                                                                                       |                                                                                                                                                |  |  |

P 4 1 2 1 2 A 0 6 2 4

\_

\_\_\_\_









| (c) What is formed in Reaction 3?                                                                   | (1) |
|-----------------------------------------------------------------------------------------------------|-----|
| A Only 1-bromopropane                                                                               |     |
| B Only 2-bromopropane                                                                               |     |
| C A mixture of bromopropanes containing mainly 2-bromopropane                                       |     |
| <b>D</b> A mixture of bromopropanes containing mainly 1-bromopropane                                |     |
| (d) A mixture of dilute sulfuric acid and which of the following reagents is needed for Reaction 4? | (1) |
| A KOH                                                                                               | (1) |
| B KMnO <sub>4</sub>                                                                                 |     |
| $\square$ C H <sub>2</sub> O <sub>2</sub>                                                           |     |
| $\square$ <b>D</b> $O_2$                                                                            |     |
| (e) The reaction of propene in Reaction 4 can be classified both as                                 | (1) |

| 🖾 A | addition and reduction.                  |  |
|-----|------------------------------------------|--|
| B   | addition and oxidation.                  |  |
| 🛛 C | free radical substitution and reduction. |  |
| D 🛛 | free radical substitution and oxidation. |  |

# (Total for Question 16 = 5 marks)

## TOTAL FOR SECTION A = 20 MARKS



#### **SECTION B**

#### Answer ALL the questions. Write your answers in the spaces provided.

- **17** This question is about the preparation of the alum, potassium aluminium sulfate,  $KAI(SO_4)_2 \cdot 12H_2O$ . It is a double salt consisting of potassium ions, aluminium ions and sulfate ions, and water of crystallization.
  - (a) The first step of the preparation involves adding an excess of aluminium foil to 10 cm<sup>3</sup> of 2 mol dm<sup>-3</sup> potassium hydroxide to form potassium aluminate.

The equation for this reaction is

 $2AI(s) + 2KOH(aq) + 2H_2O(I) \rightarrow 2KAIO_2(aq) + 3H_2(g)$ 

(i) Write a balanced **ionic** equation for this reaction.

(1)

(ii) Calculate the number of moles of potassium hydroxide used.

(1)

(iii) Hence state the number of moles of aluminium that react with the potassium hydroxide.

(1)

(iv) Use your answer to (iii) to calculate the mass of aluminium that reacts with the potassium hydroxide. Use the Periodic Table as a source of data.

(1)



| (v) Calculate the total mass of aluminium added to the potassium hydroxide if a 10% excess of aluminium is required.                | (1) |
|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| (vi) Identify <b>two</b> hazards in this first step of the preparation.<br>Hazard 1                                                 | (2) |
| Hazard 2                                                                                                                            |     |
| (b) The second step of the reaction is the addition of a slight excess of 1 mol dm <sup>-3</sup> sulfuric acid.                     |     |
| (i) Balance the following equation for the reaction<br>$KAIO_{2}(aq) + H_{2}SO_{4}(aq) \rightarrow KAI(SO_{4})_{2}(aq) + H_{2}O(I)$ | (1) |
| (ii) Calculate the volume of the 1 mol dm <sup>-3</sup> sulfuric acid that reacts with the potassium aluminate.                     | (1) |
| (iii) State how you would show that the acid had been added in excess.                                                              | (2) |
|                                                                                                                                     |     |
|                                                                                                                                     |     |
|                                                                                                                                     |     |



\*(iv) State and explain the steps necessary to obtain pure, dry crystals from the mixture. (4) (v) Suggest the colour of the crystals. (1) (vi) Suggest the formula of another metal ion which could form an alum, in combination with potassium and sulfate ions. (1) (Total for Question 17 = 17 marks) 12 P 4 1 2 1 2 A 0 1 2 2 4



(a) Draw dot and cross diagrams for the lithium and iodide ions. Show all the electrons in the lithium ion but only outer shell electrons in the iodide ion.

(2)

(b) On the Born-Haber cycle below, fill in the missing formulae (including state symbols) and the missing enthalpy change.

(3)



(c) Calculate the electron affinity of iodine,  $E_{aff1}[I(g)]$ , using the data below.

|                                                                | $\Delta H/kJ \text{ mol}^{-1}$ |
|----------------------------------------------------------------|--------------------------------|
| Lattice energy for lithium iodide, $\Delta H_{lat}$            | 759                            |
| Enthalpy change of atomization of lithium, $\Delta H_{at}$     | +159                           |
| Enthalpy change of atomization of iodine, $\Delta H_{at}$      | +107                           |
| First ionization energy of lithium, E <sub>m1</sub>            | +520                           |
| Enthalpy change of formation of lithium iodide, $\Delta H_{f}$ | -270                           |

(2)

(d) The experimental lattice energy for lithium iodide is -759 kJ mol<sup>-1</sup>. The theoretical lattice energy is different from this value.

Will the experimental lattice energy be more negative or less negative than the theoretical lattice energy? Justify your answer.

(3)



| from chlorine to iodine. |                                | (2)   |
|--------------------------|--------------------------------|-------|
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          | (Total for Question 18 = 12 ma | arks) |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |
|                          |                                |       |

**19** Hydrogen has three isotopes, <sup>1</sup>H, known as protium, <sup>2</sup>H, deuterium, and <sup>3</sup>H, tritium. (a) In terms of sub-atomic particles, give the similarities and differences between atoms of these three isotopes of hydrogen. (3) (b) When a nitrogen atom collides with a high energy neutron, one atom of tritium and one atom of another element are formed. Complete the equation below. (1)  $^{14}_{7}N$  +  $^{1}_{0}n$   $\rightarrow$   $^{3}_{1}H$  + ..... (c) Tritium-deuterium gas, consisting of molecules each containing one deuterium atom and one tritium atom, is used in some nuclear warheads. Typically, each warhead has about 4.0 g of the gas added. (i) Calculate the number of moles of tritium-deuterium in 4.0 g. (2) (ii) Calculate the volume, in cm<sup>3</sup>, of 4.0 g of tritium-deuterium gas. [Molar volume of a gas under these conditions =  $24\ 000\ \text{cm}^3\ \text{mol}^{-1}$ ] (1)



(d) Tritium is not usually included in calculations of the relative atomic mass of hydrogen, because it is radioactive and has a relatively short half-life.

Calculate the relative atomic mass of hydrogen with the following isotopic composition. Give your answer to four decimal places.

(2)

| lsotope        | Mass number | Relative abundance |
|----------------|-------------|--------------------|
| 1H             | 1.0078      | 99.9850            |
| <sup>2</sup> H | 2.0141      | 0.0150             |

(e) The electronic energy levels in hydrogen are shown below.



P 4 1 2 1 2 A 0 1 7 2 4

(ii) In some versions of the Periodic Table, hydrogen is placed in the same group as sodium. Give the electronic configurations for both a hydrogen atom and a sodium atom, using the s and p notation. Use these electronic configurations to suggest why this is a reasonable grouping. (2) Η..... Na \*(f) Which element in the Periodic Table has the highest first ionization energy? Justify your answer. (3) (Total for Question 19 = 15 marks)

P 4 1 2 1 2 A 0 1 8 2 4

**20** This question is about the gas ethane,  $C_2H_6$ , and its reactions.

(a) Write the equation, including state symbols, which represents the reaction taking place when the standard enthalpy change of combustion of ethane is measured.

(2)

(b) Ethane can react with chlorine to form chloroethane and hydrogen chloride.

$$\mathsf{C_2H_6(g)} \ + \ \mathsf{Cl_2(g)} \ \rightarrow \ \mathsf{C_2H_5Cl(g)} \ + \ \mathsf{HCl(g)}$$

| Bond  | Bond enthalpy/kJ mol <sup>-1</sup> |
|-------|------------------------------------|
| C—H   | 413                                |
| C—C   | 347                                |
| C—Cl  | 346                                |
| H—Cl  | 432                                |
| Cl—Cl | 243                                |

Rewrite this equation using displayed formulae.

Use the equation you have written, together with the bond enthalpy data, to calculate the enthalpy change for the reaction.

(4)



| (c) This reaction takes place in a number of steps, some of which are shown below.                                                    |       |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|--|--|--|--|
| Step 1 $Cl_2 \rightarrow 2Cl_2$                                                                                                       |       |  |  |  |  |  |  |  |  |  |  |
| Step 2 $CH_3CH_3 + Cl \rightarrow HCl + CH_3CH_2 $                                                                                    |       |  |  |  |  |  |  |  |  |  |  |
| (i) State the type of reaction occurring in step 1 and the conditions needed for this step.                                           |       |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                       | (2)   |  |  |  |  |  |  |  |  |  |  |
| Туре                                                                                                                                  |       |  |  |  |  |  |  |  |  |  |  |
| Conditions                                                                                                                            |       |  |  |  |  |  |  |  |  |  |  |
| (ii) Complete the equation below for the third step of the reaction, and show the movement of electrons using the appropriate arrows. |       |  |  |  |  |  |  |  |  |  |  |
| $CH_{3}CH_{2}$ + $CI$ $\rightarrow$                                                                                                   |       |  |  |  |  |  |  |  |  |  |  |
| (iii) Write equations for <b>two</b> termination steps in this reaction.                                                              | (2)   |  |  |  |  |  |  |  |  |  |  |
| (d) Ethane can be cracked in industry. Write an equation for the cracking of ethane.                                                  |       |  |  |  |  |  |  |  |  |  |  |
| (e) Suggest <b>two</b> reasons why cracking of larger alkane molecules is important in industry.                                      | (2)   |  |  |  |  |  |  |  |  |  |  |
| Reason 1:                                                                                                                             |       |  |  |  |  |  |  |  |  |  |  |
| Reason 2:                                                                                                                             |       |  |  |  |  |  |  |  |  |  |  |
| (Total for Question 20 = 16 ma                                                                                                        | arks) |  |  |  |  |  |  |  |  |  |  |
| TOTAL FOR SECTION B = 60 MARKS<br>TOTAL FOR PAPER = 80 MARKS                                                                          |       |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                       |       |  |  |  |  |  |  |  |  |  |  |



**BLANK PAGE** 



**BLANK PAGE** 



**BLANK PAGE** 

|                                |       | I    |     |                  |      |                      |          |               |              |            |                 |                                |      |              |                 | <b>—</b> |                |           |                       |           |              |                 | 1                    |                                                                                        |       |                                          |                |                         |                        |                                  |             |                                 |     |                     |
|--------------------------------|-------|------|-----|------------------|------|----------------------|----------|---------------|--------------|------------|-----------------|--------------------------------|------|--------------|-----------------|----------|----------------|-----------|-----------------------|-----------|--------------|-----------------|----------------------|----------------------------------------------------------------------------------------|-------|------------------------------------------|----------------|-------------------------|------------------------|----------------------------------|-------------|---------------------------------|-----|---------------------|
|                                | 0 (8) | (18) | 4.0 | He<br>helium     | 2    | 20.2                 | Ne       | neon          | 0.00         | 7.YC       | Ar              | 18<br>18                       | 83.8 | Кr           | krypton<br>36   | 131.3    | Xe             | xenon     | 54                    | [222]     | Rn           | radon<br>86     |                      | ted                                                                                    |       |                                          |                |                         |                        |                                  |             |                                 |     |                     |
|                                | 7     | ľ    |     |                  | (17) | 19.0                 | Ŀ        | fluorine      | ب<br>۲       | c.cc       | CI<br>chlorine  | 17                             | 79.9 | Br           | bromine<br>35   | 126.9    |                | iodine    | 53                    | [210]     | At           | astatine<br>85  |                      | Elements with atomic numbers 112-116 have been reported<br>but not fully authenticated |       | 175                                      | Lu             | lutetium<br>71          | [257]                  | <b>Lr</b><br>lawrencium          | 103         |                                 |     |                     |
|                                | 9     |      |     |                  | (16) | 16.0                 | 0        | oxygen        | α<br>• • • • | 32.1       | S               | 3uliu<br>16                    | 79.0 | Se           | selenium<br>34  | 127.6    | Te             | tellurium | 52                    | [209]     | Po           | polonium<br>84  |                      | -116 have t<br>nticated                                                                |       | 173                                      | Υb             | ytterbium<br>70         | [254]                  | bu                               | 102         |                                 |     |                     |
|                                | ß     |      |     |                  | (15) | 14.0                 | z        | nitrogen      | 7 10         | 31.0       | р<br>Phoenhorus | 15                             | 74.9 | As           | a               | 121.8    | Sb             | antimony  | 51                    | 209.0     | Bi           | bismuth<br>83   |                      | tomic numbers 112-116 hav<br>but not fully authenticated                               |       | 169                                      | Tm             | thulium<br>69           | [256]                  | <b>Nd</b><br>mendelevium         | 101         |                                 |     |                     |
|                                | 4     |      |     |                  | (14) | 12.0                 | U        | carbon        | 9            | 70.1       | Si              | 14                             | 72.6 | 9<br>Ge      | germanium<br>37 | 118.7    | Sn             | tin       | 50                    | 207.2     | PP           | lead<br>82      |                      | atomic nu<br>but not f                                                                 |       | 167                                      | Er             | erbium<br>68            | [253]                  | <b>Fm</b><br>fermium             | 100         |                                 |     |                     |
|                                | ĸ     |      |     |                  | (13) | 10.8                 | Ю        | boron         | ر<br>م 77    | 0.12       | Al              | 13                             | 69.7 | Ga           | gallium<br>31   | 114.8    | <u>_</u>       | indium    | 49                    | 204.4     | Ē            | thallium 81     |                      | nents with                                                                             |       | 165                                      |                | holmium<br>67           | [254]                  | Cf Es<br>californium einsteinium | 66          |                                 |     |                     |
| Ienus                          |       |      |     |                  |      |                      |          |               |              |            |                 | (12)                           | 65.4 | Zn           | zinc            | 112.4    | pO             | cadmium   | 48                    | 200.6     | Hg           | mercury<br>80   |                      |                                                                                        | _     | 163                                      | Dy             | dysprosium<br>66        | [251]                  | <b>Cf</b><br>californium         | 88          |                                 |     |                     |
| I he remodic ladie of Elemenus |       |      |     |                  |      |                      |          |               |              |            | (11)            | 63.5                           | СЦ   | copper<br>70 | 107.9           | Αg       | silver         | 47        | 197.0                 | Au        | gold         | [272]           | roe                  | 111                                                                                    | 159   | Tb                                       | terbium<br>65  | [245]                   | <b>BK</b><br>berkelium | 67                               |             |                                 |     |                     |
| le or                          |       |      |     |                  |      |                      |          |               |              |            |                 | (10)                           | 58.7 | Ż            | nickel<br>28    | 106.4    | Рd             | palladium | 46                    | 195.1     | £            | platinum<br>78  | [271]                | dan                                                                                    | 110   | 157                                      | Pg             | gadolinium<br>64        | [247]                  | curium<br>C                      | 96          |                                 |     |                     |
| c lad                          |       | _    |     |                  |      |                      |          |               |              |            |                 | (6)                            | 58.9 | ပိ           | cobalt          | 102.9    | Rh             | £         | 45                    | 192.2     | <u>۔</u>     | 77              | [268]                | Mt<br>meitnerium                                                                       | 109   | 152                                      |                | europium<br>63          | [243]                  | an L                             | 95          |                                 |     |                     |
| DOLL                           |       |      | 1.0 | <b>h</b> ydrogen | -    |                      |          |               |              |            | (8)             | 55.8                           | Fe   | iron<br>26   | 101.1           | Ru       | rut            | 44        | 190.2                 | °.        | osmium<br>76 | [277]           | <b>Hs</b><br>hassium | 108                                                                                    | 150   |                                          | samarium<br>62 |                         | blu                    | 94                               |             |                                 |     |                     |
| ne re                          |       |      |     |                  |      |                      |          |               |              |            |                 |                                | (2)  | 54.9         | Wn              | Шâ       | [98]           | μ         | molybdenum technetium | 43        | 186.2        | Re              | rhenium<br>75        |                                                                                        | Ã     | 107                                      | [147]          | Pm                      | promethium<br>61       | [237]                            | neptunium _ | 93                              |     |                     |
| _                              |       |      |     |                  |      | relative atomic mass | mass     | : mass        | mass         | : mass     | bol             | name<br>atomic (proton) number |      |              |                 | (9)      | 52.0           | Ъ         | chr                   | 95.9      | Wo           | molybdenum      | 42                   | 183.8                                                                                  | 3     | tungsten<br>74                           | [266]          | <b>Sg</b><br>seaborgium | 106                    | 144                              | PN          | praseodymium neodymium<br>59 60 | I 1 | <b>U</b><br>uranium |
|                                |       |      |     |                  | Key  |                      | mic sym  | atomic symbol | mic sym      | name       | (hi oroi i) i   |                                |      | (2)          | 50.9            | >        | vanadium<br>23 | 92.9      | qN                    | Ē         | 41           | 180.9           | Ta                   | tantalum<br>73                                                                         |       | <b>Db</b><br>dubnium                     | 105            | 141                     | Pr                     | praseodymium<br>59               | [231]       | <b>Pa</b><br>protactinium       | 91  |                     |
|                                |       |      |     |                  |      |                      | relat    | relat         | atc          | atomic     | arollic         |                                |      | (4)          | 47.9            | ï        | titanium<br>22 | 91.2      | Zr                    | zirconium | 40           | 178.5           |                      | hafnium<br>72                                                                          | [261] | <b>Rf</b><br>rutherfordium               | 104            | 140                     | C                      | cerium<br>58                     | 232         | thorium<br>thorium              | 6   |                     |
|                                |       |      |     |                  |      | _                    |          |               |              | (3)        |                 |                                | 45.0 | Sc           | scandium<br>21  | 88.9     | 7              | yttrium   | 39                    | 138.9     | La*          | lanthanum<br>57 | [227]                | Ac*<br>actinium                                                                        | 89    | -                                        | es             |                         | -                      |                                  | -           |                                 |     |                     |
|                                | 2     |      |     |                  | (2)  | 0.6                  | Be       | beryllium     | 4            | 24.3<br>Mg |                 | 112                            | 40.1 | Ca           | ö               | 87.6     | Sr             | strontium | 38                    | 137.3     | Ba           | 56              | [226]                | Ra<br>radium                                                                           | 88    | * Lanthanide series<br>* Actinide series |                | * Actinide series       |                        |                                  |             |                                 |     |                     |
|                                | -     |      |     |                  | (1)  | 6.9                  | <u> </u> | lithium       | γ<br>ν       | 23.0       | Na              |                                | 39.1 | ¥            | potassium       | 85.5     | Rb             | rubidium  | 37                    | 132.9     | ک            | caesium<br>55   | [223]                | <b>Fr</b><br>francium                                                                  | 87    |                                          | * Lanti        | * Actin                 |                        |                                  |             |                                 |     |                     |
|                                |       |      |     |                  |      |                      |          |               |              |            |                 |                                |      |              |                 |          |                |           |                       |           |              |                 |                      |                                                                                        |       |                                          |                |                         |                        |                                  |             |                                 |     |                     |

The Periodic Table of Elements

P 4 1 2 1 2 A 0 2 4 2 4