Pearson Edexcel

Mark Scheme (Results)
Summer 2021

Pearson Edexcel International GCSE In Mathematics B (4MB1)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021
Question Paper Log Number P65920A
Publications Code 4MB1_01_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission
- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question: eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.
If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Summary of changes from Provisional Mark Scheme

Question Number	Summary of change
5	$4 \times("-4 ")+6 y=35$

Question	Working	Answer	Mark	Notes
1	$\begin{aligned} & 2 \mathrm{x}\left(4 \mathrm{y}^{2}-9 \mathrm{y}\right) \text { or } 2 \mathrm{y}(4 \mathrm{xy}-9 \mathrm{x}) \text { or } \\ & \mathrm{xy}(8 \mathrm{y}-18) \end{aligned}$			M1 Correct partial factorisation by taking out a common factor consisting of at least 2 different terms. Implied by correct answer. Do Not ISW
		$2 x y(4 y-9)$	2	A1 Completely correct

Total 2 marks

2(a)							
					1	B1 No other squares shaded	
				1			
(b)		\square					

3	$y-4 y^{2}=\operatorname{tx}$ or $\frac{y}{t}=x+\frac{4 y^{2}}{t}$		M1	
		$x=\frac{y-4 y^{2}}{t}$	2	A1 oe eg $x=\frac{y}{t}-\frac{4 y^{2}}{t}$ or $x=\frac{-y+4 y^{2}}{-t}$ Allow the other way
round eg $\frac{y-4 y^{2}}{t}=x$ Working not required, so correct answer				
			scores full marks (unless from obvious incorrect working)	

Question	Working	Answer	Mark	Notes
4	$(1-0.64) \times 75$ or 0.64×75 or $75-0.64 \times 75$ oe	M1		
		27	2	A1 Working not required, so correct answer scores full marks (unless from obvious incorrect working)

Total 2 marks

5	Method 1	Method 2				
	$2 \mathrm{y}=17$ oe	$4 \mathrm{x}=-16$ oe		M1 Eliminating either x or y to get a correct equation in one unknown		
or $4 \mathrm{x}=-16$					\quad	$4 \times("-4 ")+6 \mathrm{y}=35$
:---						
or $2 \mathrm{y}=17$	\quad	M1Subst their x or y value into either equation or start again. If M1 has already been awarded this can be implied by a correct value for x and y. NB The Speech marks around the -4 (" $-4 ")$ means this follows through from their value				
:---:						

| $\mathbf{6}$ | $[\mathrm{AD}=] \sqrt{25^{2}-(50-35)^{2}}[=20]$ | | M1 Correct calculation to find AD or[$\mathrm{AD}=] 20$
 Allow using their $\mathrm{h}=(50-35)$ if marked on their diagram
 provided h is between 5 and 25. Must see the Pythagoras
 calculation eg $\sqrt{25^{2}-18^{2}}$ |
| :--- | :--- | :--- | :--- | :--- |
| | $[$ Perimeter $=] 50+25+35+" 20 "$ | | NB Anything appearing in square brackets is not required |

Question	Working	Answer	Mark	Notes
7	Sight of 3 n or $3 \mathrm{n}-8$ or $\mathrm{n}+20$			M1 One correct expression seen. May be seen as part of an equation
	$\mathrm{n}+20=3 \mathrm{n}-8 \mathrm{oe}$			A1 Correct equation
	Total 3 marks			

8	Arc, centred B, radius 4 cm , drawn within ABCD			M1 Ignore any parts outside of ABCD. Arc drawn should lie between an arc radius 3.8 cm and arc radius 4.2 cm . It should intersect $A B$ and BC and be complete within ABCD
	2 pairs of intersecting arcs of equal radius centred at A and D with line drawn through intersection points oe			M1 Ignore any parts outside of ABCD. Construction lines must be shown. Line should lie between 4.3 cm and 4.7 cm from $A B$.
		R identified by shading and labelled	3	A1 dep on both previous method marks awarded. Allow just shading or just R if it is clear which the area is.

9	$\frac{27}{1.08}$ or $\frac{27}{108} \times 100[=25]$		M1 For a correct method to find the original price.		
	" $\frac{27}{1.08} " \times 1.35$ or $" \frac{27}{108} \times 100 "+\frac{35}{100} \times " 25 "$ oe	33.75	3	M1 dep on previous method mark being awarded. For a correct method to increase their original price by 35%	M2 for $\frac{135}{108} \times 27 \mathrm{oe}$
oe Working not required, so correct answer scores full marks					
(unless from obvious incorrect working)					

Question	Working			Answer	Mark	Notes
10	$\begin{aligned} & 28=2 \times \\ & 120=2 \times \end{aligned}$ Or factor $\begin{aligned} & 2 \\ & \hline 2 \end{aligned}$	28 14 7	or 4×30 oe			M1 For prime factorisation of 28 and 120 (may be at ends of a factor tree), must have $2 \times 2 \ldots$ or $4 \times \ldots$ or for multiples of 120 up to at least 840 or for multiples of 28 up to at least 840
						A1 Allow $2 \times 2 \times 2 \times 3 \times 5 \times 7$
				843	3	A1ft For adding 3 to their LCM. The M1 must be awarded. An answer with no working gains no marks

| 11 | $(68-32) \times 34$ or $(32+\mathrm{x}) \times 42$ oe | | M1 Calculating the cost for either R or C. May be seen as part of a
 calculation |
| :--- | :--- | :--- | :--- | :--- |
| | $(68-32) \times 34+(32+\mathrm{x}) \times 42=3702$
 or $\frac{3702-36 \times 34-32 \times 42}{42}$ oe | M1 Setting up a correct equation or expression. | |

Question	Working	Answer	Mark	Notes
12	$\frac{4(\mathrm{x}-6)-3(8 \mathrm{x}+2)}{12}$ oe		M1 Correct method to reduce to a single fraction. Condone invisible brackets if multiplied out correctly with one sign error only. Implied by next M1	
	$\frac{4 \mathrm{x}-24-24 \mathrm{x}-6}{12}$ oe	$\frac{-10 \mathrm{x}-15}{6}$	3	M1Multiplying out correctly (allow one sign error if 4 terms given - if incorrect answer this line must be seen) If M1 has already been awarded this can be implied by a correct answer oe with denominator of 6 or -6 Dependent on both M marks being awarded.\quadTotal 3 marks

13	$\angle \mathrm{BAE}=\angle \mathrm{CDE}$ angles in the same segment OR angles at the circumference subtend from the same arc of the circle		Allow BAC and CDB Do not accept other notations such as $\hat{\text { An and } \hat{D}}$	
	$\angle \mathrm{ABE}=\angle \mathrm{DCE}$ angles in the same segment OR angles at the circumference subtend from the same arc of the circle	$\angle \mathrm{BEA}=\angle \mathrm{CED}$ vertically opposite angle OR vertically opposite angle	Allow ABD and DCA Do not accept other notations such as $\hat{\mathrm{B}}$ and $\hat{\mathrm{C}}$	
		Two/Three angles are equal therefore ABE is similar to DCE	3	M2 For two correct corresponding pairs of angles with at least one correct reason. Words in bold needed. Allow \angle for angles (Allow M1 for 2 correct corresponding pair of angles)
A correct conclusion and 2 corresponding angles stated equal with correct reason for both angles. Ignore a third angle given even if incorrect. Allow Two/Three angles are equal therefore similar				

Alternative for M1M1 -Finding EA from triangle EAD

M1 $[\mathrm{AE}=] \sqrt{\sqrt{\left(4^{2}+15^{2}\right)^{2}}+4^{2}}[=\sqrt{257}]$
M1dep $\sin \mathrm{EAX}=\frac{15}{\sqrt{" 257^{\prime}}}$ or $\sin \mathrm{EAX}=\frac{15 \sin 90}{\sqrt{" 257^{\prime \prime}}}$ or another correct method to find EAX

Question	Working	Answer	Mark	Notes
15	$\frac{4-\sqrt{12}}{4+\sqrt{12} \times \frac{4-\sqrt{12}}{4-\sqrt{12}} \text { oe }}$ M1 multiplying by $\frac{4-\sqrt{12}}{4-\sqrt{12}}$ or $\frac{2-\sqrt{3}}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$ or $\frac{4-\sqrt{12}}{4-\sqrt{12}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$ oe			
	$\frac{16+12-8 \sqrt{12}}{16-12}$ or $\frac{28-8 \sqrt{12}}{4}$ oe		M1 multiplies out correctly but need not be simplified. Allow $\frac{4+3-4 \sqrt{3}}{4-3}$ or $\frac{7-4 \sqrt{3}}{1}$ or $7-4 \sqrt{3}$ or $\frac{14-2 \sqrt{12}-4 \sqrt{3}}{2+2 \sqrt{12}-4 \sqrt{3}}$ oe	
	$7-\sqrt{48}$	3	A1 dep on both the previous method marks being awarded. Correct answer with no working is no marks. Allow $a=7$ and $b=48$ ISW once $7-\sqrt{48}$ seen NB Do not allow for $7-4 \sqrt{3}$ unless $7-\sqrt{48}$ seen in working	

$16(a)$	$25 a^{4} b^{6}$			M1 Any 2 terms correct $25 a^{4} \ldots$ or $\ldots a^{4} b^{6}$ or $25 \ldots b^{6}$
(b)	$\frac{3 x^{2} y^{1}}{3 x^{2} y^{-4}}$ or $\frac{y^{1}}{y^{-4}}$	$25 a^{4} b^{6}$	2	A1
				M1 Allow y for y^{1}

Total 4 marks

18	$[\mathrm{AD}=] \frac{25}{\tan 33}-20[=18.496 \ldots]$			M1 A correct method to find AD eg 25tan57-20 Must use correct angle.	
	$\tan (\angle \mathrm{DBA})=\frac{" 18.496 \ldots . . "}{25}[\angle \mathrm{DBA}=36.496]$			M1 dep on previous M mark awarded Allow use of their AD (maybe marked on the diagram)	M2 for $\tan (\angle \mathrm{BDA})=\left(\frac{25}{" 18.496^{\prime \prime}}\right)$
	Angle of depression = $90-$ "36.49 ..."			M1 dep on previous M mark awarded.	
		53.5	4	A1 awrt 53.5 Working not required, so correct answer scores full marks (unless from obvious incorrect working) Allow marked on diagram if clearly the angle of depression.	
Alt 1	$[\mathrm{AD}=] \frac{25}{\tan 33}-20[=18.496 \ldots]$			M1 A correct method to find AD eg $25 \tan 57$ - 20 Must use correct angle	
	$\begin{aligned} & {[\mathrm{BD}=] \sqrt{25^{2}+" 18.496 \ldots . .{ }^{\prime 2}}[=31.098 \ldots] \text { and }} \\ & \cos \angle \mathrm{DBA}=\frac{25}{" 31.098 \ldots . . "} \text { or } \\ & \sin \angle \mathrm{DBA}=\frac{" 8.496 \ldots . . "}{" 31.098 \ldots . . "} \end{aligned}$			M1 dep on previous M mark awarded Allow use of their M2 for AD if clearly labelled or $\mathrm{BD}=\sqrt{25}$ marked on the diagram for AD. Also allow use of their and $\cos \angle \mathrm{B}$ "31.098..."	M2 for $\mathrm{BD}=\sqrt{25^{2}+" 18.496 \ldots . . .2}[=31.098 \ldots]$ and $\cos \angle \mathrm{BDA}=\frac{" 18.496 \ldots \text {..." }}{\mathrm{n} 31.098 \ldots}$ or $\sin \angle \mathrm{BDA}=\frac{25}{" 31.098 \ldots "}$ oe
	Angle of depression $=90-36.49 \ldots$			M1 dep on previous M mark $\sin \angle$ BDA	
		53.5	4	A1 awrt 53.5 Allow marked on diagram if clearly the angle of depression.	
Alt 2	$[\mathrm{AD}=] \frac{25}{\tan 33}-20[=18.496 \ldots .$.			M1 A correct method to find AD eg $25 \tan 57$ - 20 Must use correct angle	
	$\cos \angle \mathrm{CBD}=\frac{\left(25^{2}+(20+" 18.496 \ldots)^{2}\right)+\left(25^{2}+18.496 \ldots{ }^{2}\right)-20^{2}}{2 \times \sqrt{25^{2}+(20+" 18.496 \ldots . .)^{2}} \times \sqrt{\left(25^{2}+18.496 \ldots .{ }^{2}\right)}}$			M1 dep on previous M mark awarded. Allow use of their AD if their value of AD is labelled or marked on the diagram for AD	
	$\begin{aligned} & \hline \text { Angle of depression }= \\ & 33+" 20.51 \ldots " \end{aligned}$			M1 dep on previous M mark awarded	
		53.5	4	A1 awrt 53.5 Allow marked on diagram if clearly the angle of depression.	

Total 4 marks
NB: Allow use of sine or cosine rule for calculations on triangle ABD or ACB but need to rearrange to get $\cos \angle \mathrm{BDA}$ etc
Question Working \quad Answer \quad Mark Notes

19	$\frac{1}{2} y \sqrt{y^{2}-\left(\frac{1}{2} y\right)^{2}}\left[=\frac{\sqrt{3}}{4} y^{2}\right]$			M1 Correct method for finding the area of the triangle eg $\frac{1}{2} y^{2} \sin 60$ or $\frac{1}{2} y^{2} \cos 30$ or $\frac{y^{2}}{4} \tan 60$ or $\frac{y^{2}}{4 \tan 30}$ oe or Heron's formula
	$\sqrt{3} x^{2}=\frac{1}{2} y \sqrt{y^{2}-\left(\frac{1}{2} y\right)^{2}} \quad[\Rightarrow 2 x=y]$ oe			M1 dep on previous M being awarded. Equating the area of the rectangle to the area of the triangle eg $\sqrt{3} x^{2}=\frac{1}{2} y^{2} \sin 60$
	$2 \mathrm{x}+2 \sqrt{3} \mathrm{x}: 3 \times$ " 2 x "or " y "+" y " $\sqrt{3}: 3 \mathrm{y}$			M1 A correct ratio un-simplified. Allow multiples. Allow $2 x+2 \sqrt{3} x: 3 \times y$ where y is a function of x based on their equation or $2 x(1+\sqrt{3}): 3 y$ where x is a function of y based on their equation.
		$(1+\sqrt{3}): 3$	4	A1 cao Working not required, so correct answer scores full marks (unless from obvious incorrect working) Allow a $=1$ and $\mathrm{b}=3$

Total 4 marks
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline 20 & \begin{array}{l}{\left[\mathrm{m}_{\mathrm{LB}}=\right] 5075,\left[\mathrm{~m}_{\mathrm{UB}}=\right] 5085\left[\mathrm{~d}_{\mathrm{LB}}=\right] 8.725,\left[\mathrm{~d}_{\mathrm{UB}}=\right] 8.735} \\
{\left[\mathrm{r}_{\mathrm{LB}}=\right] 8.45,\left[\mathrm{r}_{\mathrm{UB}}=\right] 8.55}\end{array}
$$ \& \& \& B1 For one correct LB or UB stated or used.

\hline \& \begin{array}{l}Volume=\frac{1}{3} \times 3.142 \times(\mathrm{r})^{2} \mathrm{~h} where 8.45 \leq \mathrm{r} \leq 8.55 or

Volume=\frac{\mathrm{m}}{\mathrm{d}} where 5075 \leq \mathrm{m} \leq 5085 and

8.725 \leq \mathrm{d} \leq 8.735\end{array} \& \& \& M1 Correct method to find Volume. Allow \pi instead of 3.142\end{array}\right]\)| $[\mathrm{h}=] \frac{5085}{\frac{1}{3} \times 3.142 \times 8.45^{2} \times 8.725}$ |
| :--- |

Total 4 marks

Question	Working	Answer	Mar k	Notes
21	$\left(\sqrt{\frac{10478}{1550}}\right)^{3}\left[=\frac{2197}{125}\right]$ oe			M2 The correct scale factor (17.576) Allow (M1) for $\left(\frac{10478}{1550}\right)^{3}$ or $\sqrt{\frac{10478}{1550}}\left[=\frac{13}{5}\right]$ or $5 \sqrt{62}$ and $13 \sqrt{62}$ identified as the linear SF (Accept 5 and 13)
	$\mathrm{V}_{\mathrm{A}} \times " \frac{2197}{125} "-\mathrm{V}_{\mathrm{A}}=62160 \mathrm{oe}$			M1 dep on at least one of the previous M being awarded. For equation with their SF. May be implied.
	$\left[\mathrm{V}_{\mathrm{A}}=\right] \frac{62160}{\frac{2197}{125}-1^{219}}$			M1 dep on previous M mark being awarded. For making V_{A} the subject. Allow equivalent methods
		3750		A1 cao Working not required, so correct answer scores full marks (unless from obvious incorrect working)
			5	
Alternative				
	$\left(\sqrt{\frac{1550}{10478}}\right)^{3}\left[=\frac{125}{2197}\right]$ oe			M2 The correct scale factor ($0.0568957 \ldots$...) Allow (M1) for $\left(\frac{1550}{10478}\right)^{3}$ or $\sqrt{\frac{1550}{10478}}$ or $5 \sqrt{62}$ and $13 \sqrt{62}$ identified as the linear SF (Accept 5 and 13)
	$V_{B}-V_{B} \times{ }^{125}{ }^{1297} "=62160 \mathrm{oe}$			M1 dep on at least one of the previous M being awarded. For equation with their SF. May be implied
	$\left[\mathrm{V}_{\mathrm{B}}=\right] \frac{62160}{1-\frac{125}{2197} "}-62160$			M1 dep for making V_{B} the subject and subtracting 62160. Allow equivalent methods
		3750		A1 cao Working not required, so correct answer scores full marks (unless from obvious incorrect working)

Question	Working	Answer	Mark	Notes
23	$2 x+16$ and $5 x-107$			M1 or $\mathrm{X}+16$ and $\mathrm{Y}-107$ and $5 \mathrm{X}=2 \mathrm{Y}$
	$\frac{2 x+16}{4}=\frac{5 x-107}{3} \mathrm{oe}$			M1 dep Allow one sign error or $\frac{X+16}{Y-107}=\frac{4}{3}$ or Allow $2 \mathrm{x}+16=4 \mathrm{y}$ and $5 \mathrm{x}-107=3 \mathrm{y}$
	[$\mathrm{x}=] 34$			M1 dep on both previous Method marks. Using a correct method to solve equation(s) leading to $\mathrm{x}=\ldots$ or $\mathrm{y}=\ldots$ or $5 \mathrm{x}=\ldots$ or $\mathrm{X}=\ldots$ or $\mathrm{Y}=\ldots$
	5×"34"-107			M1 dep on previous mark. or 3×21 "
		63	5	A1 Working not required, so correct answer scores full marks (unless from obvious incorrect working)
				Total 5 marks
Alternative				
	T is the total number of eagles in 2003 t is the total number of eagles in 2015			
	$\begin{aligned} & \frac{2}{7} \mathrm{~T}+16 \text { and } \frac{5}{7} \mathrm{~T}-107 \text { or } \\ & \frac{4}{7} \mathrm{t}-16 \text { and } \frac{3}{7} \mathrm{t}+107 \end{aligned}$			M1 May be seen as part of a correct equation.
	$\frac{2}{7} \mathrm{~T}+16=\frac{4}{7} \mathrm{t} \text { and } \frac{5}{7} \mathrm{~T}-107=\frac{3}{7} \mathrm{toe}$			M1 dep for 2 correct equations
	$\mathrm{t}=147$ or $\mathrm{T}=238$			M1 dep on both previous Method marks. Using a correct method to solve equation(s) leading to $\mathrm{T}=\ldots$ or $\mathrm{t}=$ or $5 \mathrm{~T}=\ldots$ or $3 \mathrm{t}=$
	$\frac{3}{7} \times 147 \text { " or } \frac{5}{7} \times 238 "-107$			M1 dep on previous mark. Allow their 147 or their 238
		63		A1 Working not required, so correct answer scores full marks (unless from obvious incorrect working)

Question	Working		Answer	Mark	Notes
24	Method 1	Method 2			
	$(2 \mathrm{x}+1)$	$\left(\mathrm{x}+\frac{1}{2}\right)$			B1 Using the factor theorem to find a factor. Implied by the $1^{\text {st }} \mathrm{M} 1$
	$3 \mathrm{x}^{2} \pm \mathrm{nx}-6$	$6 \mathrm{x}^{2} \pm \mathrm{mx}-12$			M1 Finding the quadratic factor. Accept synthetic division
	$\left(3 x^{2}+7 x-6\right)$	$\left(6 x^{2}+14 \mathrm{x}-12\right)$			A1 A correct quadratic for their method
	$(3 x-2)(x+3)$	$2(3 x-2)(x+3)$			M1 dep on previous M mark being awarded. Correct method for solving their 3 term quadratic $=0$ by formula, completing the square or factorising. Method must be seen if the quadratic is incorrect. By factorisation brackets must expand to give 2 out of 3 terms correct or correct substitution into fully correct formula (Allow 1 sign error). Allow $(6 x-4)(x+3)$ or $(3 x-2)(2 x+6)$ Allow $(3 x-2)(x+3)[=0]$ If the $1^{\text {st }}$ M1A1 is awarded this may be implied by both solutions being correct.
			$\frac{2}{3},-3$	5	A1 dep on $1^{\text {st }}$ M1A1 Correct answers with no working scores no marks.

Question	Working	Answer	Mark	Notes
25	$\left[\frac{\mathrm{dx}}{\mathrm{dt}}=\right] 6-4 \mathrm{kt}$			M1 Differentiating - at least one term correct
	$" 6-4 \mathrm{kt} "=0 \therefore \mathrm{t}=\frac{3}{2 \mathrm{k}} \text { oe }$			M1 dep on first M being awarded. For putting $\frac{\mathrm{dx}}{\mathrm{dt}}$ equal to 0 and rearranging leading to a value for t
	$\begin{aligned} & \mathrm{k}+0.9=\mathrm{k}+6 \mathrm{t}-2 \mathrm{kt}^{2} \text { or } \\ & +0.9=6 \mathrm{t}-2 \mathrm{kt}^{2} \text { oe } \end{aligned}$			M1 Allow $\mathrm{k} \pm 0.9$ as distance to form equation Implied by $4^{\text {th }}$ M1
	$\left.+0.9=6 \times\left(-\frac{3}{2 \mathrm{k}} \mathrm{k}\right)-2 \mathrm{k}\left(" \frac{3}{2 \mathrm{k}}\right)^{2}\right)^{2}\left[=\frac{9}{2 \mathrm{k}}\right]$			M1 Allow ± 0.9 substituting in their value of t
		5	5	A1 dep on all previous method marks being awarded. No incorrect working seen. Do not accept -5 since $\mathrm{t} \geqslant 0 \therefore \mathrm{k}>0$ 5 must be clearly identified as the final answer.

Question	Working	Answer	Mark	Notes
26(a)	21,24, 32,35,42,49,56,67,69, x, 83,98			M1 Ordering the numbers. x to be greater than 69 ie it could also come after the 83 or the 98
		52.5	2	A1 Working not required, so correct answer scores full marks (unless from obvious incorrect working)
(b)	$\frac{576+x}{12}=54.5$			M1 Forming an equation - need not be simplified Allow $\frac{\mathrm{n}+\mathrm{x}}{12}=54.5$ where $476<\mathrm{n}<676$
		78	2	A1 Working not required, so correct answer scores full marks (unless from obvious incorrect working)
(c)	$(30-12) \times 56[=1008]$			M1
	$\begin{aligned} & \frac{" 1008 "+12 \times 54.5}{30} \\ & \text { or } \frac{" 1008 "+(" 576+x ")}{30}\left[=\frac{1662}{30}\right] \end{aligned}$			M1 ft their $576+\mathrm{x}$ from (b) if required
		55.4	3	A1 Working not required, so correct answer scores full marks (unless from obvious incorrect working)
				Total 7 marks

Question	Working	Answer	Mark	Notes
27(a)	$\frac{1}{\mathrm{a}}\left(\begin{array}{ll}3 & -1 \\ 2 & -2\end{array}\right)\left(\begin{array}{ll}2 & -1 \\ 2 & -3\end{array}\right)=\frac{1}{\mathrm{a}}\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)$			M1 Allow for [det $\mathbf{A}=$] $(3 \times-2)-(2 \times-1)$ or -4
		4	2	A1 Working not required, so correct answer scores full marks (unless from obvious incorrect working)
(b)	$\mathbf{A B}=\left(\mathbf{A B A}{ }^{-1}\right) \mathbf{A}$ or $\mathbf{B A}^{-1}=\mathbf{A}^{-1}\left(\mathbf{A B A}{ }^{-1}\right)$			M1 May be implied by attempting to multiply matrices in the correct order
	$\begin{aligned} & {[\mathbf{A B}=]\left(\begin{array}{ll} 9 & -11 \\ 8 & -11 \end{array}\right)\left(\begin{array}{ll} 3 & -1 \\ 2 & -2 \end{array}\right)} \\ & \text { or }\left[\mathbf{B A}^{-1}=\right]\left(\begin{array}{ll} 0.55^{\prime \prime} & -0.25^{\prime \prime} \\ " 0.5 " & -0.75^{\prime \prime} \end{array}\right)\left(\begin{array}{ll} 9 & -11 \\ 8 & -11 \end{array}\right) \end{aligned}$			M1 Allow use of their value of a for $\mathbf{B A}^{-1}$ $\left[\mathbf{B A}^{-1}=\right]\left(\begin{array}{cc} \frac{2}{" 4 "} & -\frac{1}{" 4 "} \\ \frac{2}{" 4 "} & \frac{-3}{" 4 "} \end{array}\right)\left(\begin{array}{ll} 9 & -11 \\ 8 & -11 \end{array}\right)$
	$\begin{aligned} & {[\mathbf{A B}=]\left(\begin{array}{ll} 5 & 13 \\ 2 & 14 \end{array}\right)} \\ & \text { or }\left[\mathbf{B A}^{-1}=\right]\left(\begin{array}{cc} " 2.5 " & "-2.75 " \\ \hline-1.5 " & " 2.75 " \end{array}\right) \end{aligned}$			M1 Allow use of their value of a for $\left[\mathbf{B A}^{-1}=\right]\left(\begin{array}{cc}\frac{10}{4 " 4} & -\frac{11}{" 4 "} \\ -\frac{6}{" 4 "} & \frac{11}{4 " 4}\end{array}\right)$
	$\begin{aligned} & {[\mathbf{B}=]\left(\begin{array}{ll} " 0.5 " & "-0.25 " \\ " 0.5 " & "-0.75 " \end{array}\right)\left(\begin{array}{ll} 5 & 13 \\ 2 & 14 \end{array}\right)} \\ & \text { or }[\mathbf{B}=]\left(\begin{array}{cc} 2.5 " & "-2.75 " \\ "-1.5 " & " 2.75 " \end{array}\right)\left(\begin{array}{ll} 3 & -1 \\ 2 & -2 \end{array}\right) \end{aligned}$			M1 Allow use of their value of a
		$\left(\begin{array}{cc}2 & 3 \\ 1 & -4\end{array}\right)$	5	A1 cao Working not required, so correct answer scores full marks (unless from obvious incorrect working)
NB if answer is incorrect in part (a) ie if $\mathrm{a}=-4$ then the answer is $\left(\begin{array}{cc}-2 & -3 \\ -1 & 4\end{array}\right)$				and will get M1M1M1M1A0 in part(b)

