

Physics B (Advancing Physics)

Advanced GCE A2 H559

Advanced Subsidiary GCE AS H159

Mark Scheme for the Units

January 2009

H159/H559/MS/R/09J

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Physics B (Advancing Physics) (H559)

Advanced Subsidiary GCE Physics B (Advancing Physics) (H159)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
G491 Physics in Action	1
Grade Thresholds	9

G491 Physics in Action

1	Questic	on Expected Answers	Marks	Additional Guidance		
1	а	$C s^{-1} \checkmark$	1	not A		
1	b	J C ⁻¹ ✓	1	not V		
2		diameter in pixels <i>D</i> 3300 < <i>D</i> < 3800 pixels \checkmark	1	accept direct estimate method accept ruler method 7 cm / 8 cm x 4100 ≈ 3600 pixels		
		400 × diameter in pixels / 1000 (km) ✓ m	1	method ecf on other pixel values ≤ 4100 must convert to km accept correct bare final diameter estimate within range 1.3×10^3 to 1.5×10^3 (km) for 2 marks		
3	а		1	3 correct links for 1 mark otherwise zero		
3	b	same period of waveform / same lowest frequency / lowest component of spectrum✓	1	accept same fundamental frequency not same wavelength / any reference to wavelength not same main frequency not all have 500 Hz		
4	а	$R = V/I = 90 / 0.5 \times 10^{-3} \checkmark$ = 180 000 (\Omega)	1 1	method evaluation accept 180 (k Ω) / 1.8 × 10 ⁵ (Ω) allow ecf on powers of ten e.g. 180 (Ω) for missing mA		

Question		tion	Expected Answers	Marks	Additional Guidance
4	4 b		$N = 1/e / = Qt/e / = 0.5 \times 10^{-3} / 1.6 \times 10^{-19} \checkmark = 3.1(3) \times 10^{15} (electrons s^{-1}) \checkmark$	1 1	method accept symbols / words / correct numbers evaluation allow both marks for correct evaluation if no method
5	а		= 44 100 × 16 × 2 / 8 = 176 400 (bytes s-1) ✓	1	accept also 176 000 / 180 000 / 1.8 x 10 ⁵ (bytes s ⁻¹)
5	b		ratio of voltages = $0.2 / 2 \times 10^{-6} = 10^5 \checkmark$ log ₂ (10 ⁵) = 16.6 (so 16 bits adequate) / $2^{16} = 65536 < 10^5 / 2^{17} = 131072 > 10^5 \checkmark$	1 1	allow one mark for stating / unsuccessful attempt to evaluate correct equation : $b \le \log_2(V_{\text{total}} / V_{\text{noise}}) / 2^b \le (V_{\text{total}} / V_{\text{noise}})$ accept ora i.e. calculation of voltage resolutions with 16 or 17 bits with sensible comment for full credit not any credit for only qualitative answers
6	a b		$(G = 1/2.5) = 0.4 \checkmark S \checkmark$ $(G_{total} = 3 \times 0.4) = 1.2 \checkmark S$	2 1	accept correct answer without method allow unit mark from either line but credit in a accept Ω^{-1} / A V ⁻¹ for unit mark not unit mark for con units in a and b
7	а		constant ratio / factor (of scale divisions) ✓	1	accept × 10 / times 10 / goes up in powers of ten not goes up in tens
7	b		glasses have smaller range of cost and a smaller range of recyclable fraction than metals ✓	1	must mention both features and comparison explicitly clear not any similarity ora
7	С	 metals can be melted or reformed more easily ✓ / metals are easier to separate e.g. by magnet / ceramics undergo irreversible change once formed but metals don't 		1	allow any sensible reasoned <u>comparison</u> pro metal / anti ceramics identifying any problem with recycling not metals are malleable / ceramics are brittle ignore incorrect physics if basic idea is correct e.g. bonding reasoning
			Section A total	19	

Mark Scheme

G	Questi	on	Expected Answers	Marks	Additional Guidance
8	8 a		neoprene has (fairly) uniform stiffness / neo stiffness increases slightly (with strain) \checkmark rubber has more variable stiffness \checkmark specific qualification of rubber graph into either 2 or 3 regions e.g. stiff then stiffer or stiff then less stiff then more stiff \checkmark rubber is harder to stretch than neo / neoprene easier to pull \checkmark	1 1 1	any 3 out of 4 correct points: at least one from second material take stiffness to mean difficulty to stretch accept discussion of stress / force / difficulty of stretching remember 6 x original length means strain = 5 not neoprene fractures at strain greater than 6 not any credit or mention of quicker / speed not double award for a statement repeated as its converse
8	bi		(<i>E</i> = ∆stress / ∆strain) = 30×10^6 /4 ✓ m = 7.5 × 10 ⁶ (Pa) ✓ e standalone mark for correct SF ✓ 2 SF	1 1 1	accept gradient at (4,30) giving (1.5 to 1.9) × 10 ⁷ Pa not taken from wrong graph treat SF mark as standalone for other incorrect evaluations allow missing M as 1 error so 7.5 Pa scores 2 by ecf allow 3 marks for bare answer 7.5 × 10 ⁶ (Pa)
8	ii		$\frac{\text{less}}{5.8(3) \times 10^{6} < 7.5 $	1	accept less since gradient is less / less since graph curves upwards (beyond strain of 3) / less since stress is a smaller proportion of the strain must have less and reason
8	ci		strain = 80 cm / 20 cm = 4.(0) ✓	1	not 5
8	ii		stress = 18 MPa ✓ (from rubber graph) <i>A</i> = <i>F</i> / stress / = 30/18 × 10 ⁶ ✓ m = 1.7 × 10 ⁻⁶ m ² ✓ e	1 1 1	allow ecf from (i) e.g. strain of 5.0 \Rightarrow 29 MPa and $A = 1.0(3) \times 10^{-6} \text{ m}^2$ for 3 accept ecf on dropped M for 1.7 m ² for 2 marks allow max 1 ($A = F/\text{stress}$) if correct stress taken from wrong graph
			Total	11	

Mark Scheme

0	Question		Expected Answers	Marks	Additional Guidance
9	9 ai		(<i>u</i>) measurable to accuracy \approx 1 mm / is very much less than the uncertainty in <i>v</i> / is very much less than the value of <i>u</i> \checkmark	1	accept ora because (the value of) <i>u</i> is large compared to the uncertainty accept light source can be placed at a (precisely) known distance from lens / image position is judged with difficulty AW not because <i>u</i> is the variable that is changed / because uncertainties in <i>u</i> are not significant
9	ii		Smaller I <i>u</i> I / larger <i>v</i> leads to increase in uncertainty ✓	1	 not just uncertainty increases accept less negative <i>u</i> means object nearer lens etc. allow any reference to <i>u</i> as meaning I<i>u</i>l if not specified
9	bi		both points plotted correctly ✓ uncertainty bar for larger uncertainty ✓ best-fit straight line (never more than 2 small squares away from perfect line) ✓	1 1 1	both points to nearest small graph square credit if correct vertical length (4 small graph squares) even if wrongly placed accept well plotted line even if no intercept(s) not curved lines of best fit / free-hand lines (by eye)
9	ii		P = intercept = 5.5 ± 0.1 (D) ✓ / P = $1/v - 1/u$ e.g. = $4.5 - (-1.0) = 5.5$ f = $1/P = 0.18$ to 0.19 m ✓	1	allow e.c.f. from bi graph not credit for 5.5 (m) in answer line allow for calculation to 1 graph square from their graph not incorrect signs e.g. = $4.5 - 1.0 = 3.5$ (D) allow e.c.f. for incorrect P
9	ci		less uncertainty ✓	1	
9	9 ii		answer must be on the behaviour of the lens different colours focussed at different lengths from lens \checkmark lens focuses rays from near centre of lens to a single point (but nearer the edge focal point varies) \checkmark	1	One mark for chromatic aberration improved AW One mark for spherical aberration improved AW not lens is thicker hence more powerful near the centre not is better near the centre
			Total	10	

Que	stion	Expected Answers	Marks	Additional Guidance
10	ai	$R = 1.3 \times 10^{-10} \mathrm{m} \checkmark \mathrm{m}$	1	R = D/2 explicit for first method mark
		2 20 2		accept $R = (2.1 \text{ nm /8})/2 = 1.3(1) \times 10^{-10} \text{ m}$
		$V = (4/3) \pi R^3 = 9.2(1) \times 10^{-30} \text{ m}^3 \checkmark \text{e}$	1	must evaluate correctly for 2 nd 'show that' mark
				allow 9.47×10^{-50} m ³ based on values 2.1 nm / 8 given
				bare correct answer scores 1
10	aii	$(\text{density} = 9.3 \times 10^{-26} / 9.2 \times 10^{-30})$	1	accont $1.0(3) \times 10^4$ (kg m ⁻³) by ecf on given volume in i
10	an	$= 1.0(1) \times 10^4 (\text{kg m}^{-3}) \sqrt{\text{e}}$	1	accept $0.98(2) \times 10^4$ (kg m ⁻³) by ecf on allowed volume from i
				not any other ecf from i
10	iii	(density = 1.26/(0.04×0.05×0.08))		
		= 7900 (kg m⁻³) ✓ e (< aii)	1	accept 7.8(8) \times 10 ³ / 7875 (kg m ⁻³)
				density comparison not needed for the mark
10	b	spheres do not fit perfectly together /		AW ora throughout
_		there are gaps between them /	1	accept stacked spheres do not fill the whole of the space taken
		copper surface in (a) decreases the natural		up by metal
		spacing in iron crystal /		
		measurement in (a) done at a lower temp. so		
		atoms closer together ✓		
		volume per atom is bigger than calculated in	1	
		(ai) ✓	1	
10	С	change in structure identified		AW throughout
		e.g. atoms closer (c) / more densely packed ✓	1	minimum answer: e.g. atoms closer together
		consequent change in properties identified		
		e.g. so denser / so harder / so stronger /	1	∴ density rises
		so sumer ✓		accept conductivity rises or falls
				OWC mark for c on next page

Question		Expected Answers	Marks	Additional Guidance		
10	С	consequent change in properties clearly explained		QWC		
		e.g. because same mass in smaller volume / atoms bonded to more close neighbours ✓	1	because for fixed mass volume falls / conductivity rises because charge carrier density increases / conductivity falls because scattering probability rises ora for resistivity 3 rd mark is for QWC : is given for reference to structural changes related to diagram followed by attempt to explain consequence even if some physics details incorrect		
		Total	9			

Que	estion	Expected Answers	Marks	Additional Guidance
11	ai	potential divider method: $V = 6 \times 500/(260+500) \checkmark m = 3.9(5) V (\approx 4 V) \checkmark e / OR current method: I = 6/(500+260) = 7.9 mAV = IR = 7.9 \times 10^{-3} \times 500 \checkmark m = 0$	1 1	may do these parts in reverse order if current method is used; mark all a together allow both marks for bare 3.9(5) V
	ii	3.9(5) V \checkmark e I = V/R = 6/(500+260) = 7.9 mA	1	accept ecf 4 / 500 = 8.0 mA / 2 / 260 = 7.7 mA
11	b	potential divider method: thermistor takes a bigger share of the 6V / 500 Ω takes a smaller share ✓ so p.d. measured falls✓ / current method: resistance of circuit increases and current falls ✓ so smaller current gives a smaller voltage across 500 Ω ✓	1 1	AW can recalculate values for full credit: $V = 0.29 V$ $I = 9.5 \times 10^{-5} A$
11	C	central heating operates at room temp. near $20^{\circ}C$ while a fire operates >> $20^{\circ}C \checkmark$ resistance hardly changes near typical room temperatures \checkmark / R changes rapidly once T gets much higher \checkmark / low sensitivity in low T region \checkmark / high sensitivity in high T region \checkmark / unreliable since two temperatures give same R value between 0 and $20^{\circ}C \checkmark$	1 2	 QWC requires clear link between typical temperatures of events and graph any further 2 correct points accept e.g. sensitivity is <u>greater</u> for higher temperatures for 2 marks as comparison is explicit

11	di	$P = l^2 R = 0.5^2 \times 260 \checkmark m$ = 65 (W) $\checkmark e$	1 1	
11	ii	thermistor will heat up (rapidly) and its resistance will rise (significantly, and current fall) ✓	1	both points for 1 mark minimum answer: heats and <i>R</i> rises
		Total	11	
		Section B total:	41	

Grade Thresholds

Advanced GCE Physics B H159 H559 January 2009 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	Α	В	С	D	E	U
G491	Raw	60	39	33	28	23	18	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

No aggregation was available in this session.

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered Office; 1 Hills Road, Cambridge, CB1 2EU **Registered Company Number: 3484466**

Head office

Registered in England

OCR is an exempt Charity

Telephone: 01223 552552 Facsimile: 01223 552553

OCR (Oxford Cambridge and RSA Examinations)