Paper 2 Higher

Question number	Answer	Mark
1(a)	В	(1)

Question number	Answer	Mark
1(b)	 An answer that provides a description by making reference to: adds carbon dioxide/adds water vapour (1) removes oxygen (1) 	(2)

Question number	Answer	Additional guidance	Mark
1(c)	 An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): as concentration of carbon dioxide increases the (mean global) temperature increases (overall) (1) {but there is no evidence that the increase in (mean global) temperature is caused by the increase in concentration of carbon dioxide/other factors may cause the increase in (mean global) temperature} (1) 	Award for conclusion (second mark) only given if reason given	
	 OR as concentration of carbon dioxide increases the (mean global) temperature increases (1) so this does provide evidence that an increase in carbon dioxide is causing the Earth's temperature to rise (1) OR 		
	 as concentration of carbon dioxide increases the (mean global) temperature overall increases but {fluctuates/increases and decreases} (1) so this does not provide evidence that an increase in carbon dioxide is causing the Earth's temperature to rise (1) 		(2)

Question number	Answer	Mark
1(d)	D	(1)

Question number	Answer	Additional guidance	Mark
2(a)	 An answer that combines the following points of understanding to provide a logical description: (hydrogen produced as a gas so) there would be {effervescence/fizzing/ bubbles} (1) and (calcium hydroxide produced as a solid so) the water would go {cloudy/a white precipitate would form} (1) 	Allow: calcium moves (around) (1) calcium decreases in size/disappears/dissolves (1)	(2)

Question number	Answer	Mark
2(b)	$Mg + H_2O \rightarrow MgO + H_2$	
	 LHS (1) RHS (1) 	(2)

Question number	Answer	Additional guidance	Mark
2(c)	 An explanation that combines identification – application of knowledge (1 mark) and reasoning/justification – application of understanding (1 mark): In calcium the outermost electron(s) {are further away from nucleus /experience(s) greater shielding} (from the nucleus) (as shown by the electronic configuration) (1) Therefore less attraction between nucleus and electron(s)/ the electron(s) is/are easier to remove (1) 	Allow answers in terms of why reactivity of magnesium is less than that of calcium	(2)

Question number	Answer	Additional guidance	Mark
2(d)	 divides mass by relative atomic mass (1) calculates simplest ratio (1) expresses ratio correctly as empirical formula (1) 	$\begin{array}{cccc} \underline{\text{Example of calculation}}\\ \hline \text{Ca} & : & \text{Br} \\ \hline 0.2 & : & 0.8 \\ \hline 40 & : & 80 \\ \hline 0.005 & : & 0.01 \\ 1 & : & 2 \\ \hline \text{empirical formula CaBr}_2 \\ \hline \text{Formula alone scores} \\ \hline \text{max 1} \end{array}$	(3)

Question number	Answer	Mark
3(a)	С	(1)

Question number	Answer	Mark
3(b)(i)	(oil well) C	(1)

Question number	Answer	Mark
3(b)(ii)	(oil well) A	(1)

Question number	Answer	Additional guidance	Mark
3(c)(i)	 An explanation that combines identification – application of knowledge (1 mark) and reasoning/justification – application of understanding (2 marks): when the decane is heated it vaporises/turns to a gas (1) decane vapour/gas breaks down as it comes in contact with hot porous pot (1) large molecules of decane produce smaller molecules, including ethene (1) 	Do not allow this point if ethane passes over hot porous pot	(3)

Question number	Answer	Mark
3(c)(ii)	В	(1)

Question number	Answer	Mark
3(c)(iii)	$2C_{10}H_{22} + 31O_2 \rightarrow 20CO_2 + 22H_2O$	
	LHS (1)RHS both numbers correct (1)	(2)

Question number	Answer	Mark
4(a)	C	(1)

Question number	Answer	Additional guidance	Mark
4(b)	 molecular formula - C₅H₁₀ (1) structure (1) 		
			(2)

Question number	Answer	Additional guidance	Mark
4(c)(i)	 calculates relative molecular mass of C₄H₉OH (1) calculates mass of C₄H₉OH produced (1) final answer = 1.9 (kg) (1) 	Example of calculation Relative molecular mass of $C_4H_9OH = (4 \times 12) + (9 \times 1) + 16 + 1 = 74$ Mass of C_4H_9OH produced = (74 ÷ 56) × 1.4 Accept 1.85 (kg) Award full marks for use of moles/correct numerical answer without working	(3)

Question number	Answer	Mark
4(c)(ii)	A	(1)

Question number	Answer	Mark
4(d)	 X and Y are both unsaturated/contain {multiple/double} bonds/alkenes (1) Z is saturated/contains no {multiple/double} bonds/alkane (1) 	(2)

Question number	Answer	Mark
5(a)	 An explanation that combines identification – understanding (1 mark) and reasoning/justification – understanding (1 mark): the flame test only confirms the presence of lithium ions/Li⁺ (1) but another test is needed to confirm the identity of the anion/negative ion/CO₃²⁻ (1) 	
	OR	
	 the red flame test shows the presence of calcium ions Ca²⁺ and not lithium ions/Li⁺ (1) the student did not test for carbonate ions (1) 	(2)

Question number	Answer		Mark
5(b)	 name: sodium sulfate (1) formula: Na₂SO₄ (1) 	Allow formula consequential on incorrect name	(2)

Question number	Answer	Mark
5(c)	С	(1)

Question number	Answer	Additional guidance	Mark
5(d)(i)	 An answer that provides a description by making reference to: test gas with moist (red) litmus paper (1) turns blue (1) 	Allow universal indicator paper/pH paper and yellow to blue/purple	(2)

Question number	Answer	Additional guidance	Mark
5(d)(ii)	 An answer that provides a description by making reference to: iron(II) - green/pale green/grey-green and precipitate /solid (1) iron(III) - red-brown/brown and precipitate /solid (1) 	Allow two correct colours (1)	(2)

Question number	Answer	Mark
5(d)(iii)	$(Fe^{3+} + 3OH^-) \rightarrow Fe(OH)_3$	(1)

Question number	Answer	Mark
6(a)	 An explanation that combines identification via a judgement (maximum 2 marks) to reach a conclusion via justification/reasoning, which must be linked to the judgement (maximum 2 marks): it is lighter/has a lower density/than steel (1) so it is easier/more comfortable to wear (1) 	
	OR it is stronger (1) so it is less likely to be penetrated (1) 	
	OR • it is more flexible (1) • so it is easier/more comfortable to wear (1)	
	OR • does not (corrode/rust) (1) • so it will last longer (1)	(4)

Question number	Answer	Additional guidance	Mark
6(b)(i)	 calculates total surface area (1) calculates volume (1) calculates surface area to volume ratio (1) 	Example of calculationSurface area = $6 \times 2 \times 2$ = 24 (cm²)Volume = $2 \times 2 \times 2 =$ 8 (cm³)Surface area to volumeratio = $24/8 = 3:1$ Award full marks forcorrect numerical answerwithout working	(3)

Question number	Answer	Mark
6(b)(ii)	 An explanation that combines identification – application of knowledge (1 mark) and reasoning/justification – application of understanding (2 marks): silver nanoparticles have a much greater surface area to volume ratio than powder (1) OR silver nanoparticles have a much greater surface area than the same volume of a powder (1) 	
	 Plus because chemical reactions take place on the surface of the solid silver catalyst (1) so there will be more frequent collisions/the rate of reaction will be faster (1) OR So in a given time, more molecules can come together to react (1) 	(3)

Question number	Answer	Additional guidance	Mark
7(a)	$\begin{array}{l} CaCO_3 + 2HCI \rightarrow CaCI_2 + CO_2 + H_2O \\ \bullet LHS\ (1) \\ \bullet RHS\ (1) \end{array}$	Allow products in any order	(2)

Question number	Answer	Mark
7(b)(i)	(line B) less steep/(line B) flattens later (1)	(1)

Question number	Answer	Mark
7(b)(ii)	• Slope = $60 \div 72 (1)$ • = 0.83(3) (cm ³ s ⁻¹) (1)	(2)

Question number	Answer	Mark
7(c)	 An explanation that makes reference to: identification - knowledge (1 mark) and reasoning/justification - knowledge (1 mark): fewer particles/as the reactants are used up there will be fewer particles to react/lower concentration of particles (1) this will result in a lower frequency of collisions so fewer particles reacting in a given time (1) 	(2)

Question number	Answer	Mark
7(d)	С	(1)

Question number	Answer	Mark
7(e)	 An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (2 marks): the decrease in temperature will cause a decrease in rate of reaction (1) and the increase in pressure will cause an increase in rate of reaction (1) because the changes have opposite effects on the rate it is not possible which has the greater effect (1) 	(3)

Question number	Answer	Mark
8(a)	Candidates relate information given to order of elements in the periodic table to predict: dark grey/black and solid/crystals	(1)

Question number	Indicative content	Mark
*8(b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme.	
	The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	
	AO1 (6 marks)	
	 order of reactivity: chlorine > bromine > iodine 	
	 The order of reactivity supported by suitable experiments from: add (aqueous) chlorine to a solution of potassium bromide the solution turns orange/yellow bromine is produced / Cl₂ + 2KBr → Br₂ + 2KCl / Cl₂ + 2Br⁻ → Br₂ + 2Cl⁻ 	
	(so) chlorine is more reactive than/displaces bromine /oxidises bromide ions	
	 add (aqueous) bromine to a solution of potassium iodide the solution turns yellow/red/ brown iodine is produced / Br₂ + 2KI → I₂ + 2KBr / Br₂ + 2I⁻ → I₂ + 2Br⁻ 	
	 (so) bromine is more reactive than/displaces iodine/ oxidises iodide ions 	
	 add (aqueous) chlorine to a solution of potassium iodide the solution turns yellow/red/ brown iodine is produced / Cl₂ + 2KI → I₂ + 2KCI / Cl₂ + 2I⁻ → I₂ + 2Cl⁻ 	
	 (so) chlorine is more reactive than/displaces iodine/oxidises iodide ions 	
	Allow use of suggested reactions which do not produce a displacement reaction, e.g. add (aqueous) bromine to a solution of a potassium chloride with suitable conclusion/explanation	(6)

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	 Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas, enquiry, techniques and procedures lacks detail. (AO1) Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	 Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1) Presents an explanation that has a structure, which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	 Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully developed. (AO1) Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Question number	Answer	Additional guidance	Mark
8(c)(i)	 calculates mol of Fe (1) calculates mol of Br² (1) determines simplest ratio/LHS of equation (1) deduces formula of iron bromide produced/RHS of equation (1) OR divides mass by relative atomic mass (1) simplest ratio (1) empirical formula (1) deduces LHS to obtain balanced equation (1) 	Example of calculation mol Fe = $\frac{5.6}{56}$ = 0.1 mol Br ₂ = $\frac{24}{(2 \times 80)}$ = 0.15 ratio Fe:Br ₂ = 2:3/ 2Fe + 3Br ₂ 2FeBr ₃ /Fe ₂ Br ₆ Fe Br $\frac{5.6}{56}$: $\frac{24}{80}$ 0.1 : 0.3 1 : 3 FeBr ₃ 2Fe + 3Br ₂ \rightarrow 2FeBr ₃	(4)

Question number	Answer	Mark
8(c)(ii)	 An explanation that combines identification – application of knowledge (1 mark) and reasoning/justification – application of understanding (1 mark): bromine atoms are reduced (1) because electrons are gained to form bromide ions (1) 	(2)

Question number	Answer	Mark
9(a)	 An explanation that combines identification - improvement of the experimental procedure (1 mark) and justification/reasoning which must be linked to the improvement (1 mark): reverse the boiling tubes/pass gas through the tube in ice water first (1) so that if any liquid condenses in the tube it must have come from the burning wax (and not from the limewater) (1) 	(2)

Question number	Indicative content	Mark	
*9(b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme.		
	The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.		
	Candidates choose appropriate monomers to illustrate the formation of different polymers.		
	polymer molecules are long chainsmade up of simple repeating units		
	 use chloroethene (only) to form poly(chloroethene) which is addition polymerisation use ethane-1,2-diol and ethanedioic acid to form a polyester which is condensation polymerisation 		
	 one of the bonds in the double bond in chloroethene molecule breaks and chloroethene molecules join together to form a long chain molecule equation 		
	$n \xrightarrow{H} C = C \xrightarrow{CI} \rightarrow \begin{array}{c} H & CI \\ \hline C & -C \\ H & H \end{array}$		
	identification of repeat unit		
	 alcohol group combines with a carboxylic acid group and an ester (link) formed with a water (molecule) eliminated equation 		
	о но он но он но но но но но но но но но		
	со + н ₂ о		
	ester link shownidentification of repeat unit	(6)	

Level	Mark	Descriptor
	0	No awardable content.
Level 1	1–2	 The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2) Lines of reasoning are unsupported or unclear. (AO2)
Level 2	3-4	 The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2) Lines of reasoning mostly supported through the application of relevant evidence. (AO2)
Level 3	5-6	 The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2) Lines of reasoning are supported by sustained application of relevant evidence. (AO2)

Question number	Answer	Marks
9(c)(i)	carboxylic acids	(1)

Question number	Answer		Marks
9(c)(ii)	A is	B is	
	нн н—с—с—о—н нн		
	(1)	(1)	
			(2)

Question number	Answer	Mark
10(a)	В	(1)

Question number	Answer	Marks
10(b)	 An answer that combines the following points to provide a plan: measure known volume of sodium hydroxide solution (1) add same volume of each of the acids (1) stir the mixture (1) record the initial and final temperatures/temperature change (1) 	(4)

Question number	Answer	Mark
10(c)	heat energy $H_2 + Cl_2$ $H_2 + Cl_2$ $H_2 + Cl_2$	
	 progress of reaction product line, labelled (2)HCl/product(s), to right of and lower 	
	 than reactant line, labelled (2)/ICl/product(3), to right of and lower than reactant line, labelled H² + Cl²/reactants (1) curve drawn on diagram (1) activation energy labelled (1) 	(3)

Question number	Answer	Additional guidance	Mark
10(d)	 calculates energy needed to break bonds (1) calculates energy released in forming bonds (1) calculates energy change (1) evaluation of final answer with negative sign (1) 	Example of calculation Bonds broken = $436 + 243 = 679$ (kJ mol ⁻¹) Bonds formed = $2 \times 432 =$ 864 (kJ mol ⁻¹) Energy change = $679 - 864 =$ -185 (kJ mol ⁻¹) Award full marks for correct numerical answer without working	(4)