Write your name here Surname	Other n	ames
Edexcel GCE	Centre Number	Candidate Number
Chemistr Advanced Subsidi Unit 1: The Core Pr	ary	nistry
Tuesday 15 May 2012 – A		Paper Reference 6CH01/01
Time: 1 hour 30 minute	J	

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

P39306A ©2012 Pearson Education Ltd. 7/7/5/5/5/

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⊠ and then mark your new answer with a cross ⊠.

- 1 A solution contains 66 ppm of a solute. The mass of the solute dissolved in 1 kg of this solution is
 - 🖾 A 66 g
 - **■ B** 0.66 g
 - **C** 0.066 g
 - **□ D** 0.000066 g

(Total for Question 1 = 1 mark)

- 2 Complete combustion of 50 cm³ of a hydrocarbon vapour gave 350 cm³ of carbon dioxide, both gas volumes being measured at the same temperature and pressure. The formula of the hydrocarbon could be
 - $\square \mathbf{A} \quad \mathbf{C}_{8}\mathbf{H}_{18}$
 - \blacksquare **B** C₇H₁₆
 - \square C C₆H₁₄
 - $\square \mathbf{D} \quad \mathbf{C}_5 \mathbf{H}_{12}$

(Total for Question 2 = 1 mark)

- 3 Which of the following statements is true? The Avogadro constant is the number of
 - \square A grams of any element which contains 6.02×10^{23} atoms of that element.
 - **B** atoms contained in one mole of any element.
 - C atoms contained in one mole of any monatomic element.
 - **D** particles (atoms, molecules or ions) required to make one gram of a substance.

(Total for Question 3 = 1 mark)

4	burner a know burner	xperiment to determine the enthalpy change of combustion of an alcohol, a spirit containing the alcohol was weighed, lit and placed under a copper can containing on volume of water. The temperature rise of the water was measured and the re-weighed. The enthalpy change calculated from the results was much less rmic than the value reported in the literature.
	Which	of the following factors is most likely to be the cause of this error?
	A	Heat loss around the side of the copper can.
	B	The use of a thermometer with a range of $0 - 110$ °C rather than $0 - 50$ °C.
	C	The use of a measuring cylinder for measuring the water rather than a pipette.
	D 🛛	Evaporation of the alcohol during the weighing.
_		(Total for Question 4 = 1 mark)
5		Indard enthalpy changes of formation of carbon dioxide and of methanoic acid are J mol ^{-1} and -409 kJ mol ^{-1} respectively. Calculate the enthalpy change for the n
		$H_2(g) + CO_2(g) \rightarrow HCOOH(l)$
	A 🛛	-803 kJ mol^{-1}
	B B	-15 kJ mol^{-1}
	C	$+803 \text{ kJ mol}^{-1}$
	D 🛛	$+15 \text{ kJ mol}^{-1}$
_		(Total for Question 5 = 1 mark)
6	For wh	ich of the following changes is the value of ΔH negative?
	A	$\mathrm{K}(\mathrm{g}) \to \mathrm{K}^{+}\!(\mathrm{g}) + \mathrm{e}^{-}$
	B	$K^+Cl^-(s) \rightarrow K^+(g) + Cl^-(g)$
	C	$Cl(g) + e^- \rightarrow Cl^-(g)$
	D D	$Cl_2(g) \rightarrow 2Cl(g)$
_		(Total for Question 6 = 1 mark)

7	In whi	ch of the following cases	would a catio	n be most polarizing?
		Radius	Charge	
	A	small	small	
	B	small	large	
	C	large	small	
	D 🛛	large	large	
_				(Total for Question 7 = 1 mark)
8	The fir	st is the experimental val	lue, obtained f	nergy values quoted in the data booklet. rom the Born-Haber cycle, -2526 kJ mol ⁻¹ ; nol ⁻¹ . Why are the two values different?
	A	The cation polarizes the	e anion leading	to some covalent bonding.
	B	The anion polarizes the	cation leading	to some covalent bonding.
	C	Magnesium chloride is	a covalent sub	stance.
	D 🛛	The results from the Bo	orn-Haber cycl	e are too inaccurate to be reliable.
_				(Total for Question 8 = 1 mark)
9		of the following representation of bromine is meas	-	occurring when the enthalpy change of
	A	$\frac{1}{2}Br_2(l) \rightarrow Br(g)$		
	B	$\frac{1}{2}Br_2(g) \rightarrow Br(g)$		
	C C	$Br_2(l) \rightarrow Br^+(g) + Br^-(g)$	g)	
	D 🛛	$Br_2(g) \rightarrow Br^+(g) + Br^-(g)$	g)	
_				(Total for Question 9 = 1 mark)
	Use th	iis space for any rough	working. Any	thing you write in this space will gain no credit.

P 3 9 3 0 6 A 0 4 2 4

10 An org	ganic compound is represented by the skeletal formula shown below.	
	OH	
The co	ompound is	
A 🛛	CH ₃ CH ₂ CH ₂ CH(OH)CH ₂ CH ₃	
⊠ B	$(CH_3)_2CHC(OH)(CH_3)_2$	
C	(CH ₃) ₂ CHCH ₂ CH(OH)CH ₃	
D D	(CH ₃) ₂ CHCH(OH)CH ₂ CH ₃	
	(Total for Question 10 = 1 mark)	
11 How n	nany structural isomers does the alkane C_5H_{12} have?	
A	4	
🖾 B	3	
C	2	
🖾 D	1	
	(Total for Question 11 = 1 mark)	
	(Total for Question 11 = 1 mark) methane reacts with chlorine, a mixture of products forms. Which product es the strongest evidence for a free radical mechanism?	
provid	methane reacts with chlorine, a mixture of products forms. Which product	
provid	methane reacts with chlorine, a mixture of products forms. Which product es the strongest evidence for a free radical mechanism?	
provid A B	methane reacts with chlorine, a mixture of products forms. Which product es the strongest evidence for a free radical mechanism? C_2H_6	
provid A B C	methane reacts with chlorine, a mixture of products forms. Which product es the strongest evidence for a free radical mechanism? C ₂ H ₆ CH ₃ Cl	
provid A B C	methane reacts with chlorine, a mixture of products forms. Which product es the strongest evidence for a free radical mechanism? C ₂ H ₆ CH ₃ Cl HCl	
provid A B C	methane reacts with chlorine, a mixture of products forms. Which product es the strongest evidence for a free radical mechanism? C ₂ H ₆ CH ₃ Cl HCl CHCl ₃	
provid A B C	methane reacts with chlorine, a mixture of products forms. Which product es the strongest evidence for a free radical mechanism? C ₂ H ₆ CH ₃ Cl HCl CHCl ₃	
provid A B C	methane reacts with chlorine, a mixture of products forms. Which product es the strongest evidence for a free radical mechanism? C ₂ H ₆ CH ₃ Cl HCl CHCl ₃	
provid A B C	methane reacts with chlorine, a mixture of products forms. Which product es the strongest evidence for a free radical mechanism? C ₂ H ₆ CH ₃ Cl HCl CHCl ₃	
provid A B C	methane reacts with chlorine, a mixture of products forms. Which product es the strongest evidence for a free radical mechanism? C ₂ H ₆ CH ₃ Cl HCl CHCl ₃	
provid A B C	methane reacts with chlorine, a mixture of products forms. Which product es the strongest evidence for a free radical mechanism? C ₂ H ₆ CH ₃ Cl HCl CHCl ₃	
provid A B C	methane reacts with chlorine, a mixture of products forms. Which product es the strongest evidence for a free radical mechanism? C ₂ H ₆ CH ₃ Cl HCl CHCl ₃	

13 What i	is the IUPAC name of the compound shown below?
	CH ₂ CH ₃
	H ₃ C—C—CH ₂ CH ₂ CH ₃
	CH ₂ CH ₂ CH ₃
A	2-ethyl-2-propylpentane
B	3-methyl-3-propylhexane
□ 2	4-methyl-4-propylhexane
D	4-ethyl-4-methylheptane
	(Total for Question 13 = 1 mark)
14 The re	eaction of bromine with propene is an example of
A	electrophilic substitution.
B	free radical substitution.
C	electrophilic addition.
D 🛛	free radical addition.
	(Total for Question 14 = 1 mark)
15 A com	apound Z contains, by mass, 26.7% carbon, 2.2% hydrogen, and 71.1% oxygen.
	npirical formula of \mathbf{Z} is
A	CHO ₂
B	$C_2H_2O_4$
C	СНО
D D	$C_2H_2O_2$
	(Total for Question 15 = 1 mark)

	Li, Na, K
B B	Al, Si, P
C C	Si, P, S
D 🛛	Na, Mg, Al
	(Total for Question 16 = 1 mark)
	presents the element of atomic number 9 and Y the element of atomic number 20, mpound formed between these two elements is
A	covalent, $\mathbf{Y}\mathbf{X}_2$.
B	ionic, $\mathbf{Y}\mathbf{X}_2$.
C	covalent, YX.
D 🛛	ionic, YX.
	(Total for Question 17 = 1 mark)
is The io	$CuO(s) + H_2SO_4(aq) \rightarrow CuSO_4(aq) + H_2O(l)$ nic equation for the reaction is
	$Cu^{2+}(s) + SO_4^{2-}(aq) \rightarrow CuSO_4(aq)$
B	$O^{2-}(s) + H_2SO_4(aq) \rightarrow H_2O(l) + SO_4^{2-}(aq)$
C	$CuO(s) + 2H^+(aq) \rightarrow Cu^{2+}(aq) + H_2O(l)$
_	$CuO(s) + 2H^{+}(aq) \rightarrow Cu^{2+}(aq) + H_2O(l)$ $CuO(s) + H_2SO_4(aq) \rightarrow Cu^{2+}SO_4^{2-}(aq) + H_2O(l)$

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.			
21 (a) Define the term relative isotopic mass .	(2)		
 (b) Naturally occurring chlorine contains 75.53% of ³⁵Cl and 24.47% of ³⁷Cl. (i) Calculate the relative atomic mass of chlorine to four significant figures. 			
	(2)		
 (ii) Two of the peaks in the mass spectrum of chlorine, Cl₂, are at <i>m/e</i> 70 and 74. Identify the species giving rise to these peaks. 	(2)		
(iii) What is the <i>m/e</i> value of the other peak that you would expect to see in this region of the mass spectrum and the identity of the species giving rise to it?	(2)		
Value			
Species			
(Total for Question 21 = 8 ma	arks)		

P 3 9 3 0 6 A 0 9 2 4

22 (a) Defin	e the t	erm fir	st ioniz	ation e	nergy.					(2	2)
*(b) Expla even					nergy of nereases.	the elem	ents dow	n Group	1 decrea	ses (2	2)
(c) The e	leven	success	ive ioni	zation	energies	for sodiu	m are gi	ven belo	w.		
Electron removed Ionization energy	1 496	2 4563	3 6913	4 9544	5	6	7 20115	8 24491	9 28934	10 141367	11 159079
/ kJ mol ⁻¹ (i) H	Explain	n why t	he succ	essive i	onization	energies	s increase	Ċ.		(1	[]

P 3 9 3 0 6 A 0 1 0 2 4

 (i) Give the electronic structures of magnesium and of aluminium in <i>s</i>, <i>p</i> and <i>d</i> notation. Magnesium Aluminium *(ii) Explain the difference in the first ionization energies of the two metals. 	(1)
(d) The first ionization energy of aluminium (element 13) is lower than that of magnesium (element 12).	
	(2)
*(ii) Explain how these ionization energies give evidence for the electronic structure of sodium. You may use a sketch graph if you wish.	

(iii) Explain why the enthalpy change for this reaction cannot be determined directly. (1) (c) Explain why the calculation in part (b)(ii) would give an incorrect result for the enthalpy change for the reaction below. $CH_4(g) + 1\frac{1}{2}O_2(g) \rightarrow CO(g) + 2H_2O(g)$ (2) (Total for Question 23 = 8 marks)

P 3 9 3 0 6 A 0 1 4 2 4

BLANK PAGE

24 (a) Give the general formula for the homologous series of alkenes. (1) (b) What is meant by the term **unsaturated** as applied to alkenes? (1) (c) (i) Name the alkene below using *E*-*Z* nomenclature. H₃C CH₂CH₃ CH₂CH₂CH₃ Η (2) (ii) Suggest why this alkene cannot be named using the *cis-trans* naming system. (1) 15

(d) Give the structural formula of the organic product of the reaction of ethene, CH ₂ ==CH ₂ , with	
(i) hydrogen.	(1)
(ii) chlorine.	(1)
(iii) acidified aqueous potassium manganate(VII).	(1)
(iv) bromine water.	(1)
(e) Draw the mechanism for the reaction of propene with hydrogen bromide to give the	е
major product.	(4)

(f) The structure below shows two repeat units of a polymer.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
 (i) Give the displayed formulae of two isomeric alkenes, either of which could have given rise to this polymer. 	(2)
(ii) State why the empirical formula of a poly(alkene) is the same as that of the monomer from which it is produced.	(1)
(iii) State, with a reason, the atom economy for the production of a poly(alkene) from an alkene.	(1)
(Total for Question 24 = 17 ma	ırks)

 25 Sodium burns in oxygen to give a pale yellow solid X. (a) (i) 1.73 g of sodium reacts with 1.20 g of oxygen. Calculate the empirical formula of X. 	(2)
(ii) The molar mass of X is 78 g mol ^{-1} . Give the molecular formula of X .	(1)
(iii) Write the equation, including state symbols, for the reaction of sodium with oxygen to produce X .	(2)
(iv) Calculate the volume of oxygen in dm ³ (at room temperature and pressure) which reacts with 1.73 g of sodium. (The molar volume of any gas at room temperature and pressure is 24 dm ³ mol ⁻¹ .)	(2)
(v) Calculate the number of oxygen molecules that react with 1.73 g of sodium. (The Avogadro constant = 6.02×10^{23} mol ⁻¹ .)	(1)

so.	(1)
(Total for Question 25	= 9 marks)
$\begin{array}{ $	

26 (a) Explain how the atoms are held together by the covalent bond in a molecule of hydrogen. (1) (b) Draw the dot and cross diagrams for (i) methane, CH₄ (1) (ii) ethene, CH₂=CH₂ (1) (iii) nitrogen, N₂ (1) (iv) the ammonium ion, NH_4^+ (1)

(i)	The electrical conductivity of pure silicon is very low. Explain why this is so in terms of the bonding.
	(2)
(ii)	Explain the high melting temperature of silicon in terms of the bonding.
	(2)
	(Total for Question 26 = 9 marks
	TOTAL FOR SECTION B = 60 MARKS
	TOTAL FOR SECTION B = 60 MARKS
	TOTAL FOR SECTION B = 60 MARKS
	TOTAL FOR SECTION B = 60 MARKS
	TOTAL FOR SECTION B = 60 MARKS
	TOTAL FOR SECTION B = 60 MARKS
	TOTAL FOR SECTION B = 60 MARKS
	TOTAL FOR SECTION B = 60 MARKS
	TOTAL FOR SECTION B = 60 MARKS
	TOTAL FOR SECTION B = 60 MARKS

P 3 9 3 0 6 A 0 2 1 2 4

BLANK PAGE

BLANK PAGE

		Г												Т													
	0 (8)	(18) 4.0	He Helium	2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	Ъ	krypton 36	131.3	Xe	xenon 54	[222]	Rn	radon 86		ted						
	7			(17)	19.0	Ŀ	fluorine 9	35.5	บ	chlorine 17	79.9	Br	bromine 35	126.9	_	iodine 53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported but not fully authenticated	175	Lu	lutetium 71	[257]	Lr lawrencium 102	CU1
	9			(16)	16.0	0	oxygen R	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	Te	tellurium 52	[209]	Po	polonium 84		-116 have l nticated	173	Υb	ytterbium 70	[254]	NO nobelium	701
	2			(15)	14.0	z	nitrogen 7	31.0	₽.	phosphorus 15	74.9		arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav but not fully authenticated	169	Tm	thulium 69	[256]	MD mendelevium 101	101
	4			(14)	12.0	U	carbon 6	28.1	Si	silicon 14	72.6	Ge	germanium 32	118.7	Sn	tin 50	207.2	P P	lead 82		atomic nu but not f	167	ц	erbium 68	[253] -	fermium 100	201
	с			(13)	10.8	В	boron 5	27.0	AI	aluminium 13	69.7	Ga	gallium 31	114.8	Ч	indium 49	204.4	Ē	thallium 81		nents with	165	Но	holmium 67	[254] -	ES einsteinium aa	77
ents										(12)	65.4	Zn	zinc 30	112.4	PC	cadmium 48	200.6	Hg	mercury 80			163	Dy	dysprosium 66	[251]	CT ES californium os oo	70
I he regionic ladie of Elements										(11)	63.5	Cu	copper 29	107.9	Ag	silver 47	197.0	Au	gold	[272]	Rg roentgenium 111	159	Tb	terbium 65	[245]	BK berkelium 97	17
										(10)	58.7	Ņ	nickel 28	106.4	РЧ	palladium 46	195.1	F	platinum 78	[271]	Ds damstadtium 110	157	PD	gadolinium 64	[247]	aurium 06	70
										(6)	58.9	ů	cobalt 27	102.9		rhodium 45	192.2	<u>۔</u>	iridium 77	[268]	Mt meitnerium 109	152		europium 63		AII americium 05	<i>ر ۲</i>
		1.0	1.0 Hydrogen							(8)	55.8	Fe		101.1		ruthenium 44	190.2	S	osmium 76	[277]	Hs hassium 108	150		samarium 62	[242]	neptunium plutonium 03 04	71
										(2)	54.9	۸n	manganese 25	[98]	Ч	molybdenum technetium 42 43	186.2	Re	rhenium 75		Bh bohrium 107	[147]	Pm	promethium 61	[237]	neptunium 03	57
				Key	relative atomic mass	atomic symbol	Jumber]		(9)	52.0	ں د	chromium 24	95.9	Mo	molybdenum 42	183.8	3	tungsten 74	[266]	Sg seaborgium 106	144	PN	praseodymium neodymium 59 60	238	uranium 92	72
							name atomic (proton) number	;		(2)	50.9	>	vanadium 23	92.9	qN	niobium 41	180.9	Ta	tantalum 73		Db dubnium 105	141	Pr	praseodymium 59	[231]	protactinium 01	7
						atc	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5		hafnium 72	[261]	Rf rutherfordium 104	140	Ce	cerium 58	232	thorium on	۶ ک
										(3)	45.0	Sc	scandium 21	88.9	≻	yttrium 39	138.9	La*	lanthanum 57	[227]	Ac* actinium 89		SS				-
	2			(2)	0.6	Be	beryllium	4 24.3	Mg	magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[226]	Ra radium 88		* Lanthanide series	* Actinide series			
	-			(1)	6.9	:-	lithium 3	23.0	_		39.1	¥	potassium 19	85.5	Rb	rubidium 37	132.9	S	caesium 55	[223]	Fr francium 87		* Lantha * Actinic				

The Periodic Table of Elements

P 3 9 3 0 6 A 0 2 4 2 4