Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

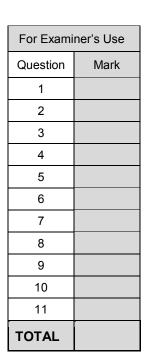
Monday 19 June 2017

Morning

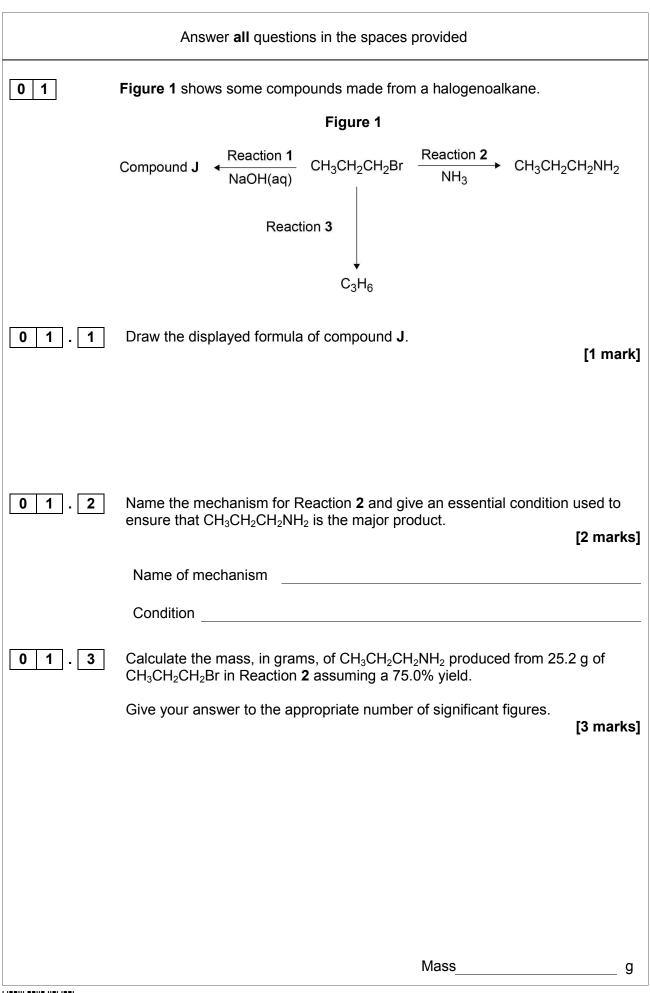
Time allowed: 2 hours

Materials

For this paper you must have:

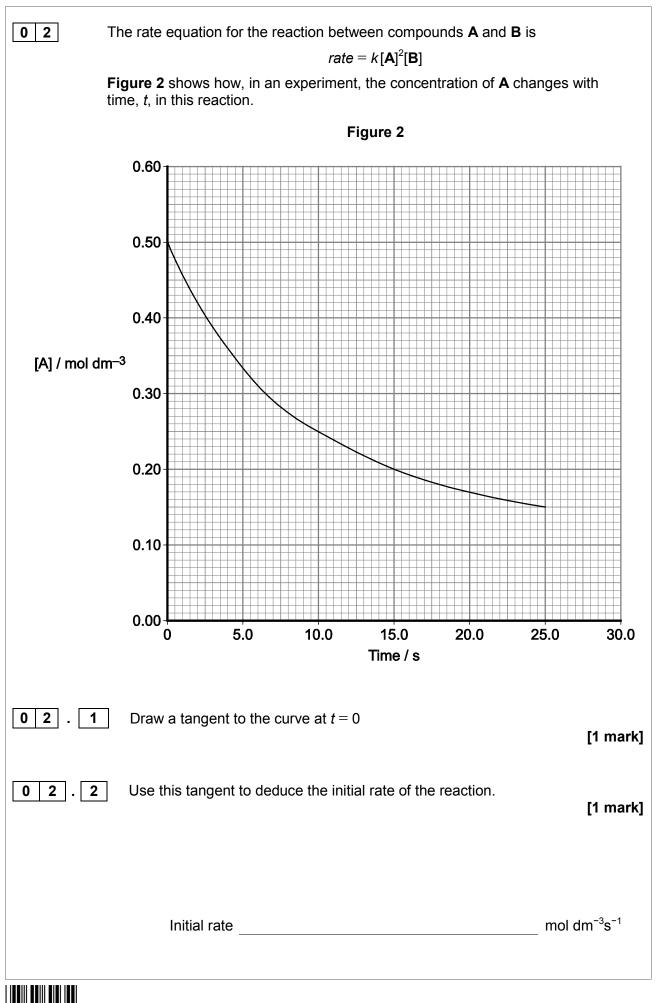

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a calculator, which you are expected to use where appropriate.

Instructions

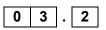

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this booklet. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.



01.4	When Reaction 2 is carried out under different conditions, a compound with molecular formula C ₉ H ₂₁ N is produced. Draw the skeletal formula of the compound. Identify the functional group in the compound including its classification. [2 marks] Skeletal formula
0 1 . 5	Functional group including classification
01.6	Name and outline a mechanism for Reaction 3. [4 marks] Name of mechanism Mechanism



02.3	The experiment was repeated at the same temperature and w initial concentration of B but with a different initial concentration The new initial rate was 1.7 times greater than in the original of	on of A .
	Calculate the new initial concentration of A.	
		[2 marks]
	Initial concentration of A	mol dm ⁻³
	Turn over for the next question	

0 3	A series of experiments is carried out with compounds \bf{C} and \bf{D} . Using the data obtained, the rate equation for the reaction between the two compounds is deduced to be
	$rate = k[\mathbf{C}][\mathbf{D}]$
	In one experiment at 25 °C, the initial rate of reaction is 3.1×10^{-3} mol dm ⁻³ s ⁻¹ when the initial concentration of C is 0.48 mol dm ⁻³ and the initial concentration of D is 0.23 mol dm ⁻³
03.1	Calculate a value for the rate constant at this temperature and give its units. [3 marks]
	Rate constant Units

An equation that relates the rate constant, k, to the activation energy, E_a , and the temperature, T, is

$$\ln k = \frac{-E_a}{RT} + \ln A$$

Use this equation and your answer from Question **3.1** to calculate a value, in $kJ \text{ mol}^{-1}$, for the activation energy of this reaction at 25 °C.

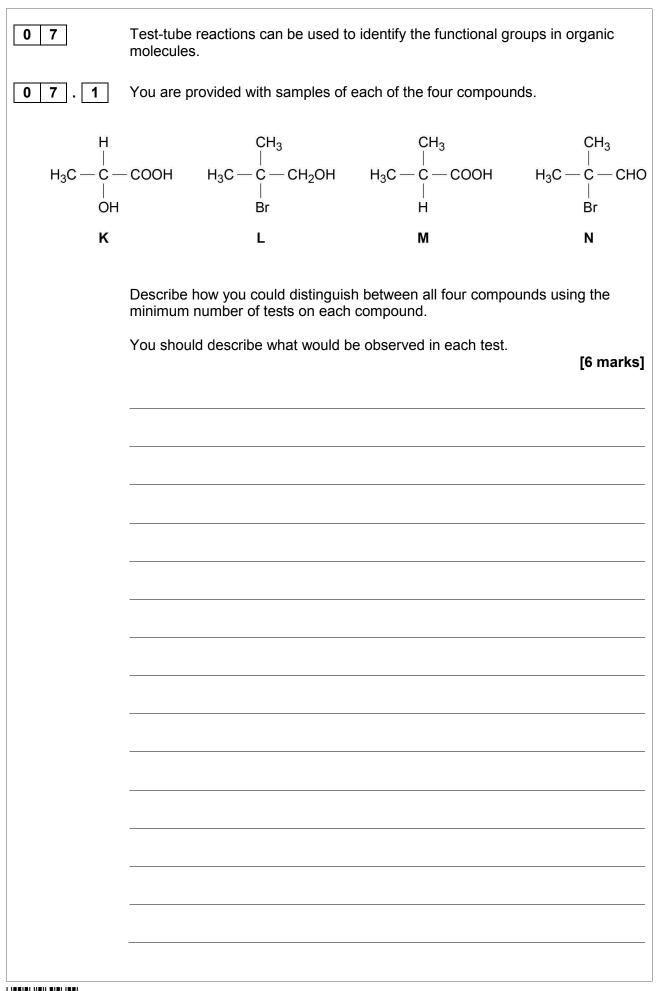
For this reaction $\ln A = 16.9$

The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

(If you were unable to complete Question **3.1** you should use the value of 3.2×10^{-3} for the rate constant. This is not the correct value.)

[4 marks]

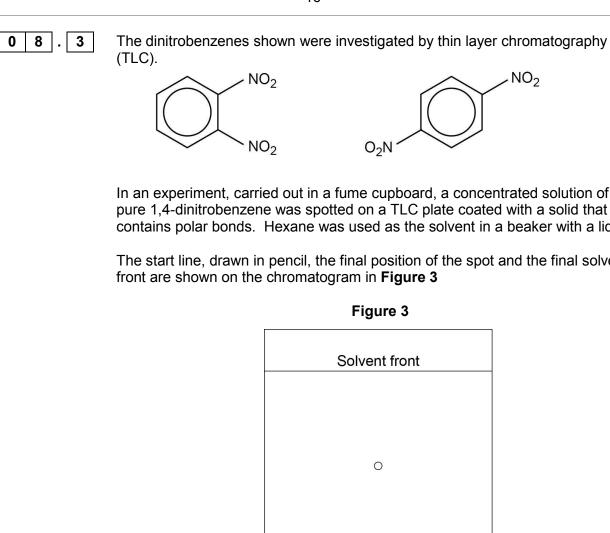
0 4	The aldehyde $CH_3CH_2CH_2CH_2CHO$ reacts with KCN followed by dilute acid to form a racemic mixture of the two stereoisomers of $CH_3CH_2CH_2CH_2CH(OH)CN$
04.1	Give the IUPAC name of CH ₃ CH ₂ CH ₂ CH ₂ CH(OH)CN [1 mark]
04.2	Describe how you would distinguish between separate samples of the two stereoisomers of CH ₃ CH ₂ CH ₂ CH ₂ CH(OH)CN [2 marks]
04.3	Explain why the reaction produces a racemic mixture. [3 marks]


0 5	Ethanoic acid an as shown.	d ethane-1,2-0	diol react together to	o form the dies	ter ($C_6H_{10}O_4$)
	2CH ₃ COOH	I(I) + HOCH	l₂CH₂OH(I) ⇔ C	₆ H ₁₀ O ₄ (I) + 2	:H ₂ O(I)
0 5.1	Draw a structura	Draw a structural formula for the diester $C_6H_{10}O_4$			
0 5.2	A small amount of ethanoic acid and		s added to a mixture	e of 0.470 mol	of
			equilibrium at a cons	stant temperati	ıre.
	Complete Table		Table 1		
		Amou	nt in the mixture /	mol	
		CH ₃ COOH	HOCH ₂ CH ₂ OH	$C_{6}H_{10}O_{4}$	H ₂ O
	At the start	0.470	0.205	0	0
	At equilibrium	0.180			
					[3 marks]
	Space for workin	g			

0 5.3	Write an expression	on for the equilit	prium constant, K _c	, for the reac	tion.
	The total volume of correct value for K			e measured t	o allow a
	Justify this statem	ent.			
	Expression				[2 marks]
	Justification				
0 5 . 4	A different mixture and left to reach e Question 5.2				
	The amounts pres	ent in the new e	-	e are shown	in Table 2 .
	[A	Table 2	-1	
		CH ₃ COOH	h the mixture / me HOCH ₂ CH ₂ OH	C ₆ H ₁₀ O ₄	H ₂ O
	At new equilibrium	To be calculated	0.264	0.802	1.15
	The value of $K_{\rm c}$ wa				
	Use this value and ethanoic acid pres	ent in the new e	equilibrium mixture	Э.	
	Give your answer	to the appropria	ate number of sign	ificant figure	s. [3 marks]
	Amount of etha	noic acid			mol

0 6	Use the Data Booklet to help you answer this question. This question is about amino acids and peptide (amide) links. Draw the structure of the zwitterion formed by phenylalanine.	[1 mark]
0 6 . 2	Draw the structure of serine at high pH.	[1 mark]
06.3	Draw the structures of both dipeptides formed when phenylalanine reserine. In each structure show all the atoms and bonds in the amide link.	eacts with [2 marks]

[6 marks]


1 3	IB	/M/Jun17
	Tu	irn ov
	IUPAC name of organic product	
	Name of mechanism	
		[6 ma
	Name and outline a mechanism for the reaction between $CH_3CH_2COCCCH_3CH_2NH_2$	Cl and
06.4	An amide link is also formed when an acyl chloride reacts with a prima amine.	ary

0 8	This question is about nitrobenzenes.	
0 8 . 1	Nitrobenzene reacts when heated with a mixture of concentrated nitr concentrated sulfuric acid to form a mixture of three isomeric dinitrob	
	Write an equation for the reaction of concentrated nitric acid with con sulfuric acid to form the species that reacts with nitrobenzene.	centrated
	sulfune acid to form the species that reacts with mitobelizene.	[1 mark]
08.2	Name and outline a mechanism for the reaction of this species with nitrobenzene to form 1,3-dinitrobenzene.	
		[4 marks]
	Name of mechanism	
	Mechanism	
	Turn over for the next question	

 O_2N

 NO_2

In an experiment, carried out in a fume cupboard, a concentrated solution of pure 1,4-dinitrobenzene was spotted on a TLC plate coated with a solid that contains polar bonds. Hexane was used as the solvent in a beaker with a lid.

The start line, drawn in pencil, the final position of the spot and the final solvent front are shown on the chromatogram in Figure 3

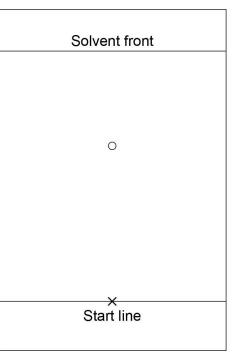
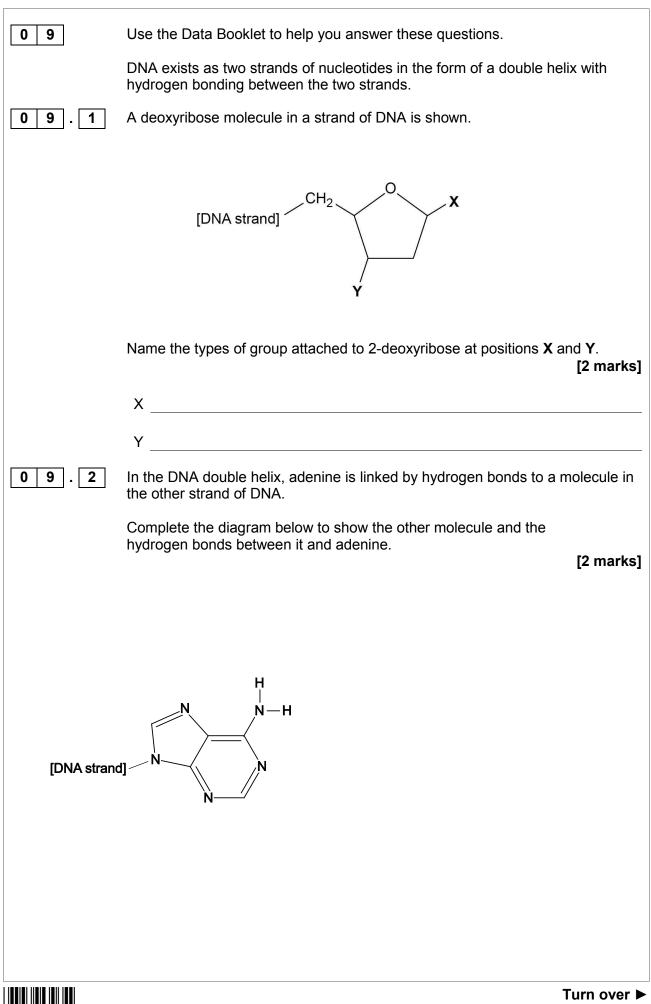
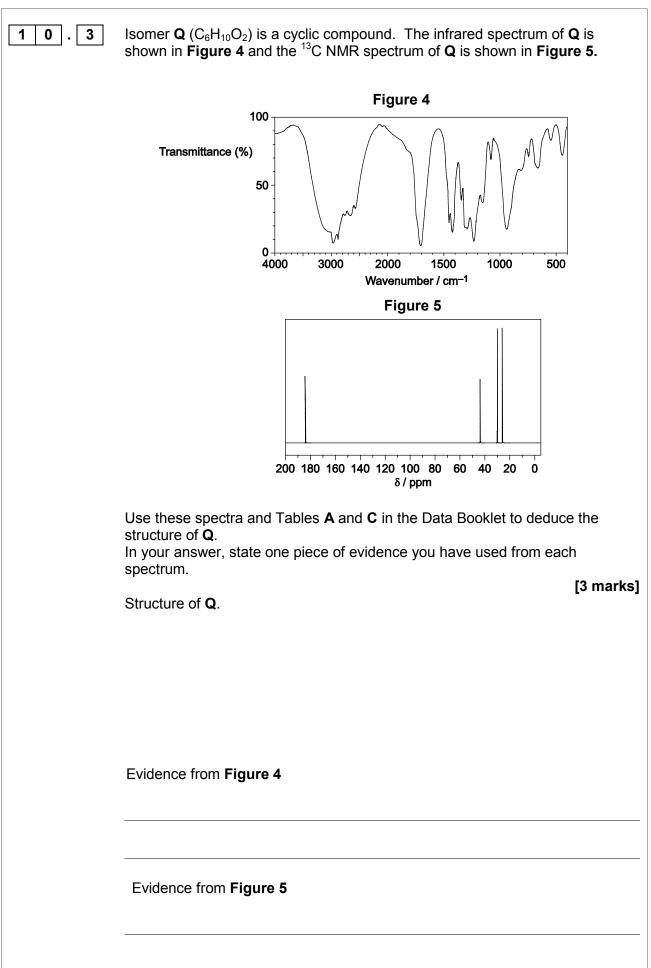


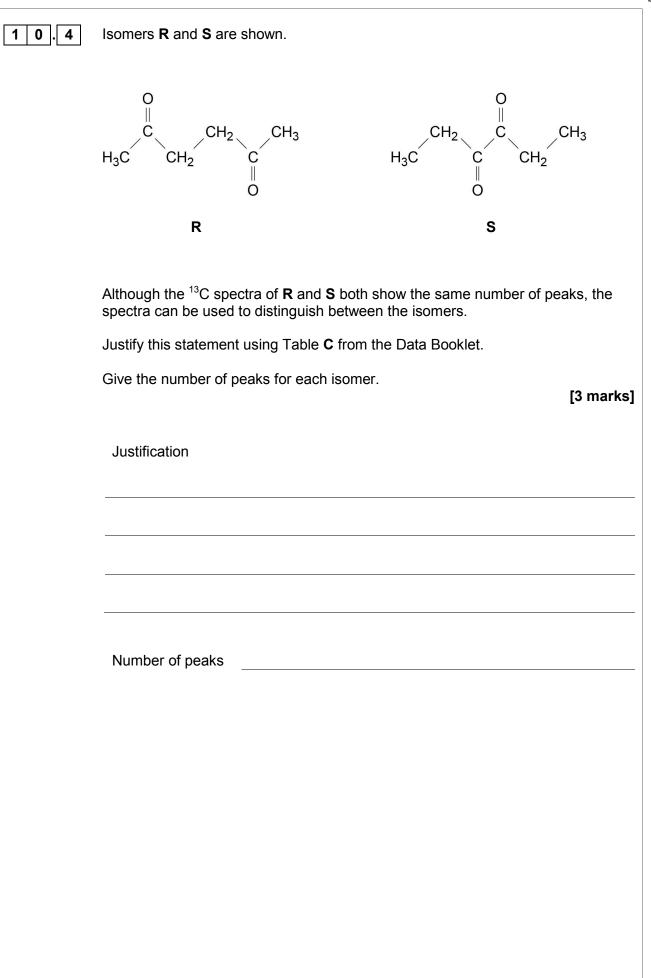
Figure 3

Use the chromatogram in Figure 3 to deduce the R_f value of 1,4-dinitrobenzene in this experiment.

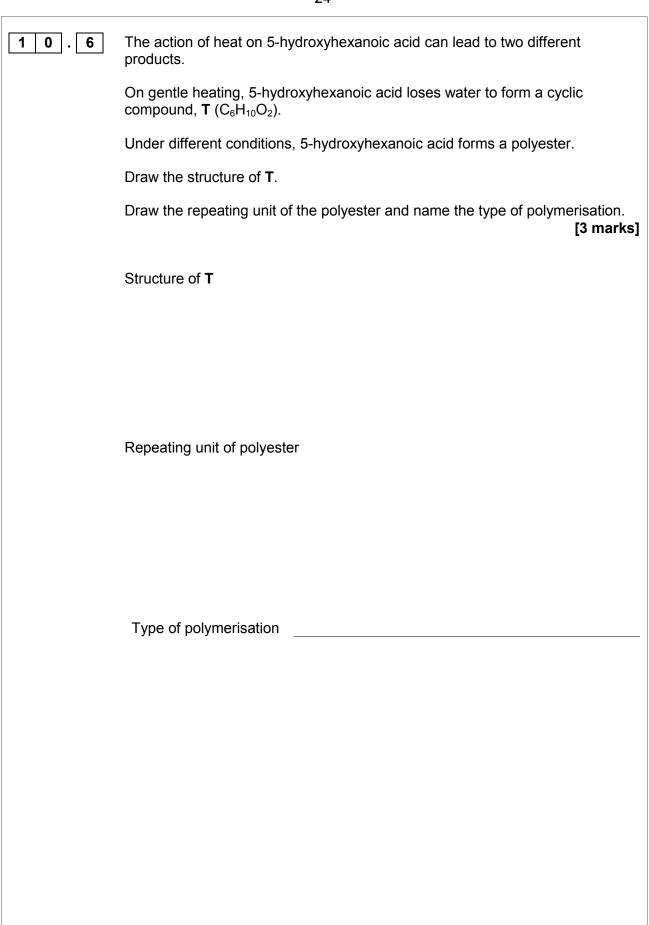

Tick (\checkmark) one box.

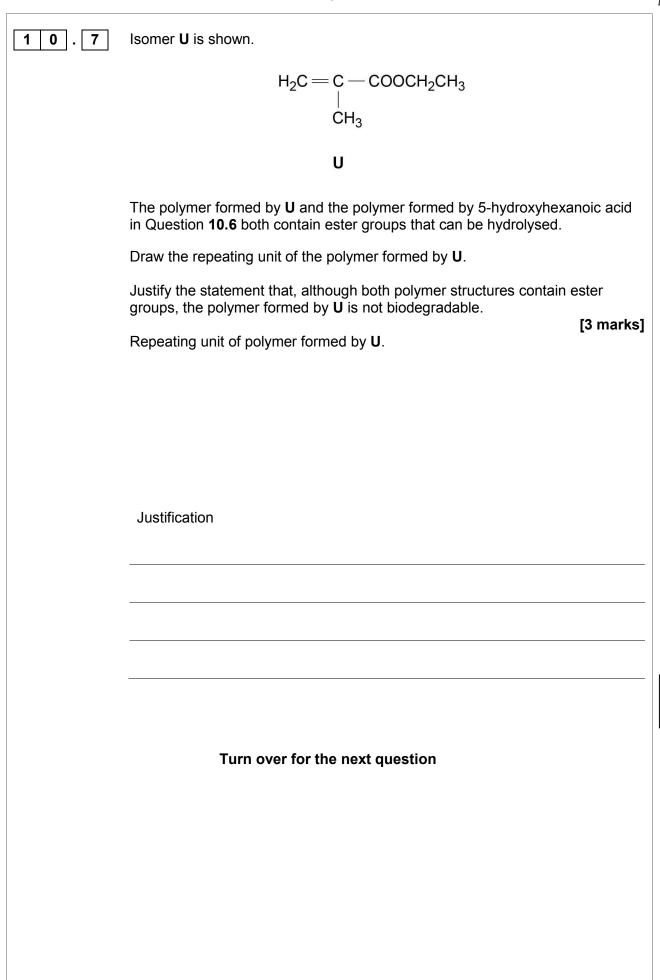
[1 mark]

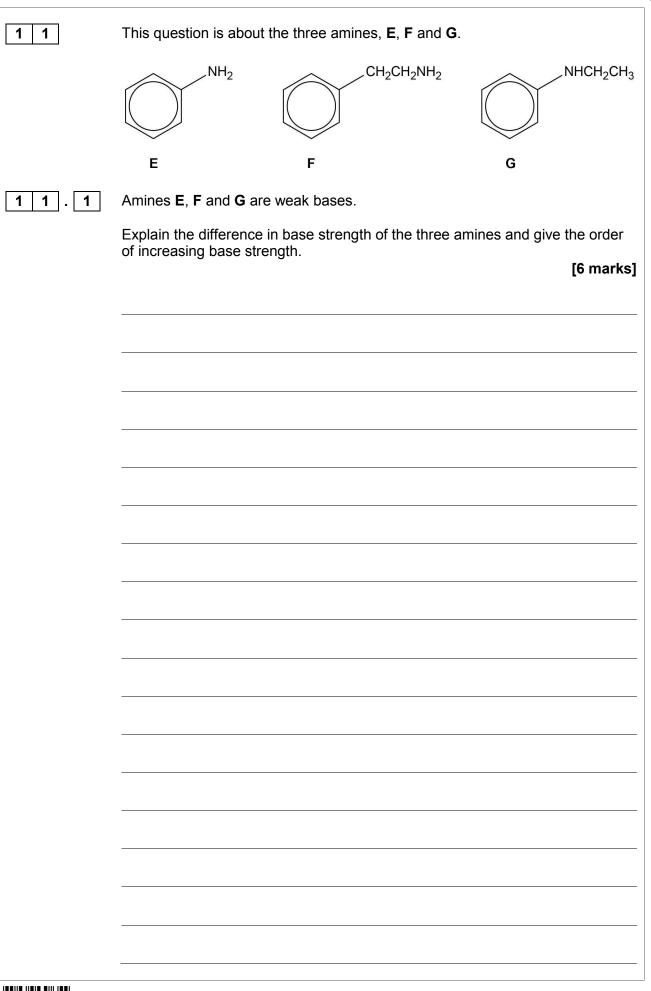

general terms what determines the distance travelled by a spot in TLC. [1 mark]
n the chromatogram, the TLC plate was held by the edges and placed Ivent in the beaker in the fume cupboard. The lid was then replaced eaker.
e other practical requirement when placing the plate in the beaker. [1 mark]
d TLC experiment was carried out using 1,2-dinitrobenzene and robenzene. An identical plate to that in Question 8.3 was used under e conditions with the same solvent. In this experiment, the R_f value of robenzene was found to be greater than that of 1,2-dinitrobenzene.
the relative polarities of the 1,2-dinitrobenzene and 1,4-dinitrobenzene ain why 1,4-dinitrobenzene has the greater R _f value. [2 marks]
e polarities
ation

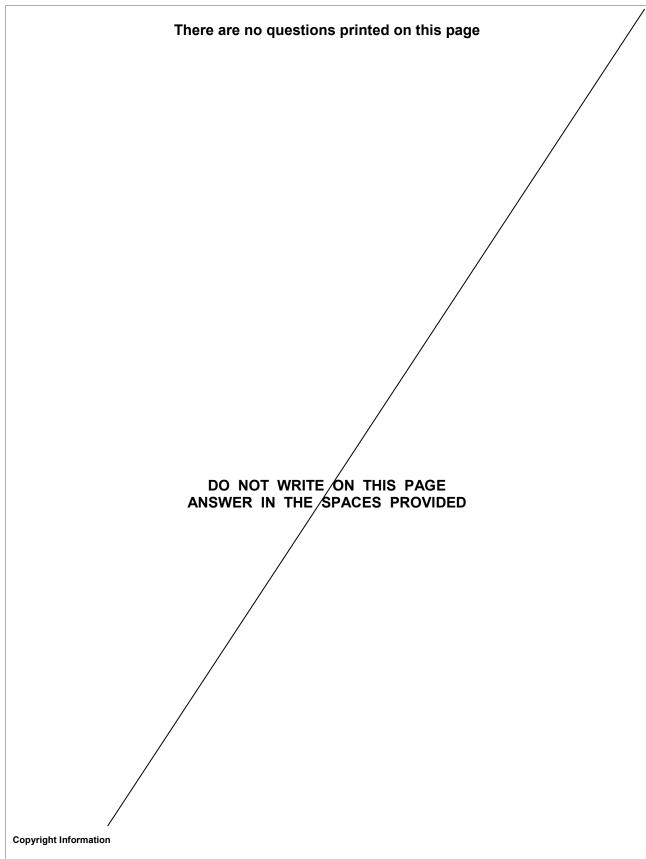


1 0	This question is about six isomers of $C_6H_{10}O_2$	
10.1	Give the full IUPAC name of isomer P .	
	CH ₃ CH ₂ COOH	
	⊂=c	
	H´ CH ₃ P	
	[1 mai	rk1
		L)
10.2	A sample of P was mixed with an excess of oxygen and the mixture ignited. After cooling to the original temperature, the total volume of gas remaining was 335 cm^3	as
	When this gas mixture was passed through aqueous sodium hydroxide, the carbon dioxide reacted and the volume of gas decreased to 155 cm ³	
	Both gas volumes were measured at 25 °C and 105 kPa	
	Write an equation for the combustion of P in an excess of oxygen and calcula the mass, in mg, of P used.	ite
	The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ [5 mark	(s]
	Mass of P used mg	ļ






10.5	Although the ¹ H spectra of R and S both show the same number of peaks, the spectra can be used to distinguish between the isomers. Justify this statement using the splitting patterns of the peaks. Give the number of peaks for each isomer. [3 marks] Justification
	Number of peaks
	Question 10 continues on the next page



	Turn over ► IB/M/Jun17/7405/2
	END OF QUESTIONS
	For each step, give reagents and conditions only. Equations and mechanisms are not required. [5 marks]
	Suggest the structures of the two intermediate compounds.
1 1 . 2	Amine F can be prepared in a three-step synthesis starting from methylbenzene.

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright $\ensuremath{\mathbb{C}}$ 2017 AQA and its licensors. All rights reserved.

