G481 Mechanics

(Question		Expected Answers	Marks	Additional Guidance
1	(a)		Correct lines from: • joule (J) to N m • watt (W) to J s ⁻¹ • newton (N) to kg m s ⁻²	B2	Note: 2 marks for all correct 1 mark for two correct 0 marks for none or one correct
	(b)	(i)	weight in the range 200 to 1200 (N)	B1	
		(ii)	area in the range 0.01 to 0.08 (m ²)	B1	
		(iii)	pressure = (b)(i)/b(ii)	B1	Allow: 1 sf answer
			Total	5	

Question	Expected Answers	Marks	Additional Guidance
2 (a)	W = mg weight = 1.50×9.81 = 14.72 (N) or 14.7 (N) or 15 (N)	B1	Allow : Use of 9.8 (m s ⁻²) Allow : Bald 15 (N); but not '1.50 × 10 = 15(N)'
(b) (i)	Net / resultant force (on B) is less / (net) force (on B) is less than its weight / there is tension (in the string) / there is a vertical / upward / opposing force (on B)	B1	Note: Must have reference to force
(iii)	$s = ut + \frac{1}{2}at^{2} \text{ and } u = 0$ $1.40 = \frac{1}{2} \times 1.09 \times t^{2}$ $t = 1.60 \text{ (s)}$ $v^{2} = 2 \times 1.09 \times 1.40 / v = 0 + 1.09 \times 1.60$	C1 C1 A1	Allow: 2 marks for 1.75/1.09' if answer from (iii) is used Allow: 2 sf answer Allow: 2 marks if 2.80 m is used; time = 2.27 (s) Possible ecf
	$v = 1.75 \text{ (m s}^{-1})$ $v = 1.74 \text{ (m s}^{-1})$	A1	Allow : 1.7 or 1.8 (m s ⁻¹)
(iv)	change in velocity = 2.47 + 1.50 (= 3.97 m s ⁻¹) acceleration = $\frac{3.97}{0.030}$ acceleration = 132 (m s ⁻²)	C1 A1	Ignore sign for change in velocity Allow: 130 (m s ⁻²) Special case: acceleration = $\frac{2.47 - 1.50}{0.030}$ = 32.3 or 32 (m s ⁻²) scores 1 mark
	Total	9	

C	Question		Expected Answers	Marks	Additional Guidance
3	(a)		mass = $\underline{140 \times 3.0}$ (= 420 kg)	B1	Allow: $\frac{420}{3.0} = 140$ (reverse argument)
	(b)	(i)	total mass = $500 + 560 + 420$ (= 1480 kg) total weight = $1480 \times 9.8(1)$ / total weight = 14520 (N) net force = 1480×1.8 / net force = 2664 (N) tension = $14520 + 2664$ tension = $1.7(2) \times 10^4$ (N)	C1 C1 C1 C1 A0	Note: Omitting one of the masses – can score maximum of 3 Omitting two masses – can score maximum of 2 Examples: 3 marks if mass of cable is omitted tension = $1908 + 10400 = 1.23 \times 10^4$ (N) 2 marks if mass of cable and people are omitted tension = $900 + 4905 = 5.8 \times 10^3$ (N) Note: 4 marks for 'tension = $(m(g + a) =) 1480 \times (9.81 + 1.8)$ '
		(ii)	stress = $\frac{1.72 \times 10^4}{3.8 \times 10^{-4}}$ / stress = $\frac{(b)(i)}{3.8 \times 10^{-4}}$ stress = $4.5(3) \times 10^7$ (Pa)	C1 A1	Possible ecf from (i) Note: A tension of 1.7×10^4 (N) gives an answer of $4.4(7) \times 10^7$ (Pa)

(Quest	ion	Expected Answers	Marks	Additional Guidance
4	(a)		The mass (of the electron) increases as its speed approaches \underline{c} / speed of light / 3×10^8 m s ⁻¹	M1 A1	Not: mass 'changes' / 'electron becomes heavier'
	(b)	(i)	A line with correct arrow in the <i>y</i> direction has length of 14 to 16 'small squares'	B1	
			A line with correct arrow in the <i>x</i> direction has length of 24 to 26 'small squares'	B1	Note: If correct arrows are not shown, then maximum mark is 1
		(ii)	component = $(8.0\cos 31 =)6.86$ (m s ⁻¹) or 6.9 (m s ⁻¹)	B1	Allow: 6.85 as BOD
	(c)	(i)	Correct vector triangle drawn 2.14 (kN) 90° 1.50 (kN)	B1	Note : Expect at least one 'label' on the sketch, eg: 2.14, 1.5, 90 ⁰ The 'orientation' of the triangle is not important The directions of all three arrows are required
			$(resultant force)^2 = 2.14^2 + 1.50^2$	C1	
			resultant force = 2.61 (kN)	A1	Allow: 2 sf answer of 2.6 (kN) Allow a scale drawing; 2 marks if answer is within ± 0.1 kN and 1 mark if ± 0.2 kN Alternative for the C1 A1 marks: 1.50cos(55) or 2.14cos(35) C1 resultant force = 1.50cos(55) + 2.14cos(35) resultant force = 2.61 (kN) A1
		(ii)	2.6(1) (kN)	B1	Possible ecf
			(Constant velocity implies) zero <u>net</u> force / zero acceleration	B1	Not: 'resultant force = drag' since the first B1 assumes this
			Total	10	

C	uest	ion	Expected Answers	Marks	Additional Guidance
5	(a)		Energy cannot be created or destroyed; it can only be transferred/transformed into other forms or The (total) energy of a system remains constant or (total) initial energy = (total) final energy (AW)	B1	Allow: 'Energy cannot be created / destroyed / lost'
	(b)		Any suitable example of something strained (eg: stretched elastic band)	B1	
	(c)	(i)	$E_{p=} mgh \text{ and } E_{k} = \frac{1}{2} mv^{2}$ (Allow Δh for h)	B1	Not: $E_k = mgh$
		(ii)	$mgh = \frac{1}{2}mv^{2}$ $v^{2} = 2gh \text{or} v = \sqrt{2gh}$	B1 B1	
	(d)	(i)	$m = \rho V$ $m = 1.0 \times 10^{3} \times (1.2 \times 10^{-2} \times 2.0 \times 10^{7})$ mass of water = 2.4 × 10 ⁸ (kg)	C1 C1 A0	Allow any subject for the density equation
		(ii)	loss in potential energy = $2.4 \times 10^8 \times 9.81 \times 2.5 \times 10^3$	C1	Allow 1 mark for '5.89 × 10 ¹² (J)'
			30% of GPE = $0.3 \times 5.89 \times 10^{12}$ (=1.77 × 10^{12})	C1	Allow 2 marks for '1.77 × 10 ¹² (J)'
			power = $\frac{1.77 \times 10^{12}}{900}$ power = $1.9(63) \times 10^9$ (W) (≈ 2 GW)	C1 A0	Note : $\frac{5.89 \times 10^{12}}{900}$ (= 6.5 GW) scores 2 marks
		(iii)	Any correct suitable suggestion; eg: the energy supply is not constant/ cannot capture all the rain water / large area (for collection)	B1	Note: Do not allow reference to 'inefficiency' / 'cost'
			Total	11	

Q	Question		Expected Answers	Marks	Additional Guidance
6	(a)		The graph shows length and not extension of the spring / spring has original length (of 2.0 cm) (AW)	B1	Allow: 'length cannot be zero'
	(b)		Straight line (graph) / linear graph / force ∞ extension / constant gradient (graph)	B1	Not 'force ∞ length'
	(c)		force constant = $\frac{2.0}{0.04}$ force constant = 50 (N m ⁻¹)	C1 A1	Note : The mark is for any correct substitution Allow : 1 mark for 0.5 (N m ⁻¹) – 10 ⁿ error Allow 1 mark for $5/12 \times 10^{-2} = 41.7$ or $4/10 \times 10^{-2} = 40$ or $3/8 \times 10^{-2} = 37.5$ or $2/6 \times 10^{-2} = 33.3$ or $1/4 \times 10^{-2} = 25$
	(d)		work done = $\frac{1}{2}Fx$ or $\frac{1}{2}kx^2$ or 'area under graph' work done = $\frac{1}{2} \times 3.0 \times 0.06$ or $\frac{1}{2} \times 50 \times 0.06^2$ work done = 0.09 (J)	C1	Possible ecf Note: 1 sf answer is allowed
	(e)		Find the gradient / slope (of the tangent / graph) Maximum speed at 1.0s / 3.0s / 5.0s / steepest 'part' of graph / displacement = 0	B1 B1	Allow:2 marks for 'steepest / maximum gradient'
			Total	8	

C	Question		Expected Answers	Marks	Additional Guidance
7	(a)	(i)	It has maximum / large / increased stress at this point	B1	Allow: it has 'same force but thinner/smaller area' Not: Thin / small area
		(ii)	The tape has (permanent) extension / deformation when the force / stress is removed (AW)	B1	Note: Need reference to force or stress removed Allow: ' does not return to original size / shape / length when force / stress is removed'
	(b)		Measurement: Diameter Any two from: original / initial length (Not: final length) extension / initial and final lengths weight / mass	B1 B1 X 2	The term <i>diameter</i> to be included and spelled correctly to gain the mark
			 Equipment: Micrometer / vernier (calliper) (for the diameter of the wire) Any two from: Ruler / (metre) rule / tape measure (for measuring the original length / extension) Travelling microscope (for measuring extension) Scales / balance (for measuring the mass & mg 	B1 B1 × 2	The term <i>micrometer I vernier</i> (<i>calliper</i>) to be included and spelled correctly to the gain mark. (ALLOW: Micrometer is used to measure area / radius / thickness – as BOD)
			equation is used or for measuring weight) / Newtonmeter (for the weight of hanging masses) / 'known' weights used		Allow: 'known masses & mg equation' but not 'known masses'
			 Determining Young modulus: stress = force/(cross-sectional) area and strain = extension/original length 	B1	Allow: stress = F/A and strain = x/L
			 Young modulus = stress/strain / Young modulus is equal to the gradient from stress-strain graph (in the linear region) 	B1	Special case for determining Young modulus: Gradient from force-extension graph is $\frac{EA}{L}$ B1 Young modulus = gradient × L/A B1
			Total	10	