

General Certificate of Education

Mathematics 6360

MM1B Mechanics 1B

Mark Scheme

2009 examination - January series

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x \mathrm{EE}$	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM1B

Q	Solution	Marks	Total	Comments
1	$2.5 \times 12+1.5 \times 4=4 v$ $v=\frac{36}{4}=9 \mathrm{~ms}^{-1}$	M1 A1 A1	3	M1: Three term momentum equation, correct values but condone incorrect signs. A1: Correct equation with correct signs. A1: Correct speed Note: Consistent use of $m g$ instead of m throughout deduct 1 mark.
	Total		3	
2 (a)	$t=0, t=30, t=50 \text { seconds }$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	B1: Any one correct time B1: The other two correct times Deduct one mark for each extra time if more than three times are given. (eg $0,15,30,50$ scores B1B0) (eg 0, 15, 30, 40, 50 scores B0B0) Condone 49 or 48 instead of 50
(b)	$s_{1}=\frac{1}{2} \times 30 \times 5=75 \mathrm{~m} \mathrm{AG}$	M1		M1: Finding distance by calculation of area. (Must see use of 0.5 or $1 / 2$)
		A1	2	A1: Correct answer from correct working. (If candidates use two constant acceleration equations, both must be seen for the M1 mark.)
(c)	$s_{2}=\frac{1}{2} \times 4 \times 20=40 \mathrm{~m}$	M1		M1: Finding distance using area of the second triangle.
		A1		A1: Correct distance (ignore any negative signs). (If candidates use two constant acceleration equations, both must be seen for the M1 mark.) Accept $38 / 36$ from use of $49 / 48$ instead of 50
	$s=75+40=115 \mathrm{~m}$	M1		M1: Addition of the 75 metres and their distance. ($75-40=35$ OE scores M0)
		A1F	4	A1F: Correct result using their value for second area. eg Accept 113/111 from use of 49/48 instead of 50
(d)	$s=75-40=35 \mathrm{~m}$	M1		M1: Difference between 75 and their value for the second distance. (Allow their distance - 75) $(75-(-40)=115 \text { OE scores M0) }$
		A1F	2	A1F: Correct result using their value for second area. (eg $40-75=-35$ M1A0) eg Accept 37/39 from use of 49/48 instead of 50
	Total		10	

MM1B (cont)

MM1B (cont)

Q	Solution	Marks	Total	Comments
4(a)	Peg is smooth	B1	1	B1: Correct assumption
(b)	String is light	B1		B1: First correct assumption
	String is inextensible or inelastic	B1	2	B1: Second correct assumption
	Tension is the same throughout the string			Note: Ignore any additional assumptions.
(c)	$11 g-T=11 a$	M1		M1: Equation of motion for A, containing
				$T, 11 \mathrm{~g}$ or 107.8 and $11 a$.
		A1		A1: Correct equation
	$T-9 \mathrm{~g}=9 a$	M1		M1: Equation of motion for B containing
				$T, 9 \mathrm{~g}$ or 88.2 and $9 a$.
		A1		A1: Correct equation
	$2 g=20 a \quad$ AG			
	$a=0.98 \mathrm{~ms}^{-2} \mathbf{A G}$	A1	5	A1: Correct acceleration from correct working.
				Note: Do not penalise candidates who consistently use signs in the opposite direction throughout, provided they give their final answer as 0.98 . If final answer is -0.98 don't award final A1 mark.
				Special Case: Whole String Method $2 g=20 a$ and $a=2 g / 20=0.98$ OE M1A1A1
				Use of $g=9.81$ gives 0.981 . If this is the first time award M1A1M1A1A0, but don't penalise again on the same script.

MM1B (cont)

Q	Solution	Marks	Total	Comments
4(d)(i)	$v=0+0.98 \times 0.5=0.49 \mathrm{~ms}^{-1}$	M1 A1	2	M1: Use of constant acceleration equation to find v with $u=0, a=0.98$ and $t=0.5$. A1: Correct v
(d)(ii)	$s=0+\frac{1}{2} \times 0.98 \times 0.5^{2}=0.1225 \mathrm{~m}$ OR	M1 A1		M1: Finding distance travelled by each particle with $u=0, a=0.98$ and $t=0.5$. A1: Correct distance. Accept 0.122 or 0.123
	$\begin{aligned} & 0.49^{2}=0^{2}+2 \times 0.98 s \\ & s=\frac{0.49^{2}}{2 \times 0.98}=0.1225 \end{aligned}$	$\begin{aligned} & \text { (M1) } \\ & \text { (A1) } \end{aligned}$		M1: Finding distance travelled by each particle with $u=0, a=0.98$ and their v. A1: Correct distance. Accept 0.122 or 0.123
	$\begin{aligned} d & =2 \times 0.1225 \\ & =0.245 \mathrm{~m} \end{aligned}$	M1		M1: Doubling distance or use of $d / 2$ in their original equation.
		A1	4	A1: Correct final distance. Allow 0.244 or 0.246 . (Use of $0.5 \times 0.49=0.245$ scores zero unless justified)
				If candidates calculate the distance first award marks as above (see (d)(i)) or: M1: Use of constant acceleration equation to find v with $u=0, a=0.98$ and $s=$ 0.1225 . A1: Correct v Note: If parts (i) and (ii) are not separated or clearly labelled still award marks for both parts if justified.
	Total		14	

MM1B (cont)

MM1B (cont)

MM1B (cont)

Q	Solution	Marks	Total	Comments
7(a)	5	B1		B1: Forming a triangle or diagram to find v. Do not penalise if the sides are not in proportion. (See example) ${ }_{5}$
	Followed by			(may be implied later by a correct equation)
	$v^{2}=2^{2}+5^{2}-2 \times 2 \times 5 \cos 45^{\circ}$	M1		M1: Using cosine rule with 2,5 and any angle to find v. Equation must contain a negative sign and a cosine.
	$v=3.85459=3.85 \mathrm{~ms}^{-1} \text { (to } 3 \mathrm{sf} \text {) } \mathbf{A G}$	A1 A1		A1: Correct equation. Note that the implied B1 can be awarded at this stage. A1: Correct velocity from correct working with an intermediate calculation shown or a final value from a value with more than 3 sf.
	OR $\begin{aligned} & v_{1}=5-2 \cos 45^{\circ}(=3.5858) \\ & v_{2}=2 \cos 45^{\circ}(=1.414) \end{aligned}$	(M1) (A1)		M1: Two perpendicular equations, with 2, 5 and $\sin 45^{\circ}$ or $\cos 45^{\circ}$. A1: Both components with correct magnitude. Note that the implied B1 can be awarded at this stage.
	$\begin{aligned} & v=\sqrt{\left(5-2 \cos 45^{\circ}\right)^{2}+\left(2 \cos 45^{\circ}\right)^{2}} \\ & \left.v=3.85459=3.85 \mathrm{~ms}^{-1} \text { (to } 3 \mathrm{sf}\right) \mathbf{A G} \end{aligned}$	(A1)	4	A1: Correct velocity from correct working with an intermediate calculation shown or a final value from a value with more than 3 sf.

MM1B (cont)

Q	Solution	Marks	Total	Comments
7(b)	$\frac{\sin \theta}{2}=\frac{\sin 45^{\circ}}{3.855}$	M1		M1: Use of sine rule, with 2, 3.855 or 3.85 or awrt 3.85 and any angle.
		A1		A1: Correct expression
	$\theta=21.5^{\circ}$	A1		A1: Correct angle. Awrt 21° or 22°
	$\text { Bearing }=270+21.5=292^{\circ}$	A1		A1: Correct bearing. Do not penalise candidates who include decimals. Accept 291°
	OR $\frac{\sin \theta}{5}=\frac{\sin 45^{\circ}}{3.855}$	(M1)		M1: Use of sine rule, with 5, 3.855 or 3.85 or awrt 3.85 and any angle.
		(A1)		A1: Correct expression
	$\theta=113^{\circ}$	(A1)		A1: Correct angle. Allow awrt 113° or 114°.
	$\text { Bearing }=360-(113.3-45)=292^{\circ}$	(A1)		Also allow awrt 66° or 67°. A1: Correct bearing. Do not penalise candidates who include decimals. Accept 291°
	OR $\tan \theta=\frac{2 \cos 45^{\circ}}{5-2 \cos 45^{\circ}}$	(M1)		M1: Consideration of perpendicular components using values from part (a).
		(A1)		A1: Correct expression
	$\theta=21.5^{\circ}$	(A1)		A1: Correct positive angle. Awrt 21° or 22°
				Also allow method leading to awrt 68° or 69°
	Bearing $=270+21.5=292^{\circ}$	(A1)		A1: Correct bearing. Do not penalise candidates who include decimals. Accept 291°
	OR $\cos \theta=\frac{3.855^{2}+5^{2}-2^{2}}{2 \times 5 \times 3.855}$	(M1)		M1: Use of cosine rule, with 2, 3.855 or 3.85 or awrt 3.85 and 5.
		(A1)		A1: Correct expression
	$\theta=21.5^{\circ}$	(A1)		A1: Correct angle. Awrt 21° or 22°
	Bearing $=270+21.5=292^{\circ}$	(A1)	4	A1: Correct bearing. Do not penalise candidates who include decimals. Accept 291°
	Total		8	

MM1B (cont)

Q	Solution	Marks	Total	Comments
8				If candidates have already used $g=9.81$ do not penalise again on this question.
(a)	$0^{2}=\left(28 \sin 50^{\circ}\right)^{2}+2 \times(-9.8) s$ $s=\frac{\left(28 \sin 50^{\circ}\right)^{2}}{2 \times 9.8}=23.5 \mathrm{~m}$ OR $\begin{aligned} & 0=28 \sin 50^{\circ}-9.8 t \\ & t=\frac{28 \sin 50^{\circ}}{9.8}=2.1887 \\ & s=28 \sin 50^{\circ} \times 2.1887-4.9 \times 2.1887^{2}=23.5 \end{aligned}$	(M1) (A1) (dM1) (A1)	4	M1: Equation to find the max height, with $v=0, u=28 \sin 50^{\circ}$ or $u=28 \cos 50^{\circ}$ and -9.8 or $-g$. A1: Correct equation dM1: Solving for the height A1: Correct height. Awrt 23.5 Note: If using a memorised formula, either 4 marks if final answer correct, 3 marks if substituted correctly but evaluated incorrectly, otherwise zero. M1: Equation to find time to the max height, with $v=0, u=28 \sin 50^{\circ}$ or $u=28 \cos 50^{\circ}$ and -9.8 or $-g$. A1: Correct time dM 1 : Finding the height with their time and $u=28 \sin 50^{\circ}$ or $u=28 \cos 50^{\circ}$ and -4.9 or $-g / 2$ A1: Correct height. Awrt 23.5

MM1B (cont)

Q	Solution	Marks	Total	Comments
8(b)	$2=28 \sin 50^{\circ} t-4.9 t^{2}$	M1		M1: Quadratic equation in t with a $\pm 2, u=28 \sin 50^{\circ}$ or $u=28 \cos 50^{\circ}$ and -4.9 or $-g / 2$. A1: Correct terms
		A1		A1: Correct signs for equation
	$\begin{aligned} & 0=4.9 t^{2}-28 \sin 50^{\circ} t+2 \\ & t=0.0953 \text { or } t=4.282 \end{aligned}$	dM1		$\mathrm{dM1}$: Solving the quadratic equation
	$t=4.282=4.28 \mathrm{~s} \text { (to } 3 \mathrm{sf}) \mathbf{A G}$	A1		A1: Correct larger time selected from two values.
	OR	(M1)		M1: Calculation of two times, which sum or differ to give the time of flight.
	$\begin{aligned} & 0=28 \sin 50^{\circ}-9.8 t \\ & t=\frac{28 \sin 50^{\circ}}{9.8}=2.1887 \end{aligned}$ OR	(A1)		A1: Correct time by equation for zero vertical component of velocity or maximum height.
	$\begin{aligned} & 23.5=28 \sin 50^{\circ} t-4.9 t^{2} \\ & t=2.1887 \end{aligned}$			
	$\begin{gathered} 21.5=4.9 t^{2} \\ \quad 21.5 \end{gathered}$	(dM1)		dM1: Correct expression for time to fall.
	$t=\sqrt{\frac{21.5}{4.9}}=2.0947$	(A1)		A1: Correct time.
	$2.1887+2.0947=4.2834=4.28$ (to 3sf) $\mathbf{A G}$	(A1)	5	A1: Correct time. Accept 4.29 if their answer rounds to 4.29.

MM1B (cont)

Q	Solution	Marks	Total	Comments
8(c)	$v_{x}=28 \cos 50^{\circ}\left(=18.00 \mathrm{~ms}^{-1}\right)$	B1		B1: Horizontal component, need not be evaluated.
	$v_{y}=28 \sin 50^{\circ}-9.8 \times 4.282=-20.51 \mathrm{~ms}^{-1}$	M1		M1: Equation for vertical component with $28 \sin 50^{\circ}$ (or $28 \cos 50^{\circ}$ if $\sin 50^{\circ}$ used for horizontal
		A1		A1: Correct vertical component. Awrt ± 20.5
	$v=\sqrt{18.00^{2}+20.51^{2}}=27.3 \mathrm{~ms}^{-1}$	dM1		dM1: Finding speed with a + sign inside the square root.
		A1F	5	A1F: Correct speed. Awrt 27.3. Intermediate values can be implied by final answer.
	Total		14	
	TOTAL		75	

