Centre No.		Pape	er Reference			Surname	Init	tial(s)
Candidate No.		6 C H	0 1	/	1	Signature	1	
	Paper Reference(s) 6CH01/1						Examiner's	use only
		cel GC	E					
	Chemis	trv					Team Leader's	
		ed Subsi	diarv					
			v		. . .		Questio Numbo	
	Unit I: I	The Core P	rincip	les (DI C	nemistry	1	
	G 1 A			1			2	
	Ĩ	ssessment I		1			3	
	Time: 1 h	our 15 min	utes				4	
							5	
	Materials requir	ed for examination	- Items in Nil	cluded	with	question papers	6	
	111		1111				7	
							8	
							9	
Instructions to							10	_
In the boxes above Check that you h	e, write your centre nu ave the correct question	mber, candidate nu on paper.	umber, your	surna	me, in	itial(s) and signatu	re. 11	
Answer ALL the	questions. Write your nust be answered with	answers in the spa					12	
through the box	() and then mark yo	ur new answer wit			, your	nind, put a nine	13	
Do not use penci	l. Use black or blue in	1K.					14	
Information fo							15	
	dividual questions and stions in this question						· 16	
There are 28 pag Candidates may	es in this question pap	er. Any blank pag	ges are indic	ated.			17	
							18	
Advice to Can Ouality of writte	didates	be taken into acco	ount in the m	narking	g of vo	our responses	- 19	
to Questions 15(an asterisk. Qua	a), 16(d), 18(a)(iv), 18 lity of written communication with leas and grammar, pur	(b)(i) and 18(b)(ii) nication includes c). These que larity of exp	estions	are ir	ndicated with		
	-	<u>^</u>	-				Tota	1
This publication may be reprod Edexcel Limited copyright pol ©2008 Edexcel Limited. Printer's Log. No. N329200.						ede	Tur EXCE	n over
W850/6242/57570 3/2/2/	1 18811	N 3 2 9 2	0 A 0	1 2	∎∎ii∎ii 8	advancing	learning, char	nging live

Edexcel GCE in Chemistry

Ľ

© Edexcel Limited 2007

7

advancing learning, changing lives

(SECTION A	Leave blank
]	minu	tes	ALL the questions in this section. You should aim to spend no more than 25 on this section. For each question, select one answer from A to D and put a e box (⊠). If you change your mind, put a line through the box (곳) and then mark your new answer with a cross (⊠).	
			Use the Periodic Table as a source of data.	
1.	Go	ing a	across a period in the Periodic Table from left to right, the general trend is that	
	×	A	the bonding in the element itself changes from ionic to covalent	
	\mathbf{X}	B	the number of neutrons in the nucleus increases	
	X	С	the first ionisation energy decreases	
	X	D	the metallic character increases	Q1
			(Total 1 mark)	
2.			ectron configurations of argon, iron, chlorine and one other element are given but not in order. Which one represents the unnamed element?	
	\mathbf{X}	A	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$	
	\mathbf{X}	B	$1s^2 2s^2 2p^6 3s^2 3p^6$	
	\times	С	$1s^2 2s^2 2p^6 3s^2 3p^4$	
	\mathbf{X}	D	$1s^2 2s^2 2p^6 3s^2 3p^5$	Q2
			(Total 1 mark)	
3.	its	stru	insterfullerene is a carbon molecule with formula C_{60} which can trap metal ions in cture. Which of the following compounds of buckminsterfullerene would give a mass/charge ratio at 837.3 in a mass spectrometer?	
	\mathbf{X}	A	Na_4C_{60}	
	\mathbf{X}		K ₃ C ₆₀	
	\mathbf{X}	С	Ca ₃ C ₆₀ AgC ₆₀	
	\mathbf{X}	D	AgC_{60}	Q3
			(Total 1 mark)	

-

4. This	question is about the following equations:	Leave blank
	A $Cu(NO_3)_2(s) \rightarrow CuO(s) + 2NO_2(g) + O_2(g)$	
	B $2\text{HCl}(aq) + \text{CuO}(s) \rightarrow \text{H}_2\text{O}(l) + \text{CuCl}_2(aq)$	
	$C C_4H_9OH(l) + 6O_2(g) \rightarrow 4CO_2(g) + 5H_2O(l)$	
	D $C_8H_{18}(l) + 8\frac{1}{2}O_2(g) \rightarrow 8CO(g) + 9H_2O(l)$	
(a)	Which equation is not balanced?	
	A	
\mathbf{X}	B	
\times	C	
\times	D	
	(1)	
(b)	Which equation shows incomplete combustion?	
\times	A	
\mathbf{X}	В	
\times	C	
\times	D	
	(1)	Q4
	(Total 2 marks)	
Use th	is space for any rough working. Anything you write in this space will gain no credit.	

I

5.	ent	halp	of the equations shown below represents the reaction for which ΔH is the standard y change of formation, $\Delta H_{f298}^{\ominus}$, for ethanol, C ₂ H ₅ OH. Ethanol melts at 156 K and 352 K.	Leave blank
	X	A	$2C(g) + 6H(g) + O(g) \rightarrow C_2H_5OH(g)$	
	X	B	$2C(s) + 3H_2(g) + O_2(g) \rightarrow C_2H_5OH(l)$	
	X	С	$2\mathrm{C}(\mathrm{s}) + 3\mathrm{H}_2(\mathrm{g}) + \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{C}_2\mathrm{H}_5\mathrm{OH}(\mathrm{g})$	
	X	D	$2C(s) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(l)$	Q5
			(Total 1 mark)	

6. Use the data about four fuels given below to answer this question.

Fuel	Formula	Name	Enthalpy change of combustion /kJ mol ⁻¹	Molar mass /g mol ⁻¹
Α	CH_4	methane	-890	16
В	CH ₃ OH	methanol	-726	32
С	C ₃ H ₈	propane	-2219	44
D	C ₄ H ₁₀	butane	-2877	58

(a) Which fuel, A, B, C or D, produces most energy per gram on complete combustion?

🖾 A

B

C

D D

(1)

- (b) Scientists give governments advice on technical issues. What information would scientists use when advising governments on the choice of one of these fuels, if the aim was to minimise carbon dioxide production?
- A mass of carbon per gram of fuel
- **B** mass of carbon per kilojoules produced
- C number of kilojoules produced per gram
- **D** number of kilojoules produced per mole

(1) Q6

(Total 2 marks)

Leave blank Question 9 is about the following ionisation energy sequences. 9. The values are all in kJ mol⁻¹. 700 Α 1400 1000 950 830 B 420 3100 5900 8000 4400 С 1000 1250 1520 420 590 D 1520 2700 3900 5800 7200 Select from A to D the sequence which is most likely to represent the following: (a) The first ionisation energies of five consecutive members of the same group in the Periodic Table, in order of increasing atomic number. Х Α \mathbf{X} B С X X D (1) (b) The first five ionisation energies of an s-block element. Α \mathbf{X} B \mathbf{X} С X D \mathbf{X} (1) (c) The first five ionisation energies of a noble gas. X A В \mathbf{X} С X D \times (1) Q9 (Total 3 marks)

10. Question 10 is about four hydrocarbons with molecular formulae as shown. C_2H_2 А B C_3H_6 С C_3H_8 D $C_4 H_{10}$ (a) Which hydrocarbon has the same empirical formula as its molecular formula? A B **C** D D (1) Use this space for any rough working. Anything you write in this space will gain no credit. (b) Which has a molecular ion in the mass spectrum at mass/charge ratio = 58? 🖾 A B B **C** D D (1) Edexcel GCE in Chemistry © Edexcel Limited 2007 Sample Assessment Materials

Leave blank

		Leave blank
	Which is neither an alkane nor an alkene?	
X	Α	
\times	В	
X	С	
X	D (1)	
(d	Which could be 2-methylpropane?	
	Α	
\mathbf{X}	В	
×	C	
\mathbf{X}	D	010
		Q10
	(Total 4 marks)	

Use this space for any rough working. Anything you write in this space will gain no credit.

	Leave blank
(b) Which compound has E–Z isomers?	
⊠ B	
\Box C	
\square D (1)	
(1)	Q11
(Total 2 marks)	
 Chemists investigating the mechanism of the reaction of ethene and bromine thought that the first step was the addition of Br⁺. To test this, they reacted bromine with ethene in the presence of sodium chloride. 	
If their theory about the first step of the reaction was correct, which product might form as well as 1,2-dibromoethane?	
\square A CH ₂ BrCH ₂ Na	
\square B CH ₂ BrCH ₂ Cl	
\square C CH ₂ ClCH ₂ Cl	
\square D CH ₂ NaCH ₂ Na	Q12
(Total 1 mark)	
13. Which of the following is the correct name for the compound below?	
CH ₃ Cl	
H CH ₃	
☑ A Z-3-chlorobut-2-ene	
\square B E-3-chlorobut-2-ene	
\square C E-2-chlorobut-2-ene	
D Z-2-chlorobut-2-ene	Q13
(Total 1 mark)	
TOTAL FOR SECTION A: 21 MARKS	

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- **14.** Copper(II) sulfate solution can be prepared from solid copper(II) carbonate by reaction with hot dilute sulfuric acid.
 - (a) Write the equation for the reaction, including state symbols.

(1)

(b) The experiment was carried out using 0.025 moles of sulfuric acid of concentration $2.0 \text{ mol } \text{dm}^{-3}$. What volume of this sulfuric acid was used?

(1)

(c) (i) It is usual to react the sulfuric acid with a slight excess of copper(II) carbonate.
 Calculate the mass of copper(II) carbonate needed if a 10% excess is required.
 [Molar mass of copper(II) carbonate = 123.5 g mol⁻¹]

(2)

(ii) A student doing this experiment chose to use a balance reading to 0.01g in an
attempt to work accurately. Was this choice of balance necessary from the point of view of accuracy? Explain
your answer.
(1)
d) The sulfuric acid is heated to boiling and the copper(II) carbonate is added in small portions.
State the next step needed to prepare pure copper(II) sulfate solution. Justify your answer.
(1)
e) When the solution of copper(II) sulfate is allowed to crystallise, the crystals which are produced have the formula CuSO ₄ .5H ₂ O.
(i) What is the molar mass of $CuSO_4.5H_2O$?
(1)
(ii) 3.98 g of CuSO ₄ .5H ₂ O crystals were obtained. Calculate the percentage yield in this experiment
this experiment.
uns experiment.
this experiment. (2)

a)	Describe the bonding in magnesium and explain why it is a good conductor of electricity.
	(3)
(b)	Draw a diagram (using dots or crosses) for the ions in magnesium fluoride showing all the electrons and the ionic charges on:
	(i) the magnesium ion
	(1)
	(1) (ii) the fluoride ion.
	(ii) the fluoride ion.
	(ii) the fluoride ion. (1)
(c)	 (ii) the fluoride ion. (1) Under what conditions does magnesium fluoride conduct electricity?
c)	(ii) the fluoride ion. (1)
(c)	 (ii) the fluoride ion. (1) Under what conditions does magnesium fluoride conduct electricity?
(c)	 (ii) the fluoride ion. (1) Under what conditions does magnesium fluoride conduct electricity?

l

(c) (i) Oceanographers studying plankton found that a sample of seawater contained 1.20 nanomol dm ⁻³ of chlorophyll, C ₃₅ H ₇₇ MgN ₄ O ₅ . (1 nanomol = 1 × 10 ⁻⁹ mol) What mass of magnesium would be present in 1.00 cm ³ of this sample of seawater? Give your answer to three significant figures. (2) (ii) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the element is most difficult to locate. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(ii)	Why do the three isotopes have the same chemical properties?	Leave blank
 (1) (c) (i) Oceanographers studying plankton found that a sample of seawater contained 1.20 nanomol dm⁻³ of chlorophyll, C₃₅H₇₇MgN₄O₅. (1 nanomol = 1 × 10⁻⁹ mol) What mass of magnesium would be present in 1.00 cm³ of this sample of seawater? Give your answer to three significant figures. (ii) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the element is most difficult to locate. Suggest which element is most difficult to locate. (1) (1) [1] 				
 1.20 nanomol dm⁻³ of chlorophyll, C₃₅H₇₇MgN₄O₅. (1 nanomol = 1 × 10⁻⁹ mol) What mass of magnesium would be present in 1.00 cm³ of this sample of seawater? Give your answer to three significant figures. (i) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the elements still cannot be located with certainty by this technique. Suggest which element is most difficult to locate. (1) Q15 				
(2) (ii) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the elements still cannot be located with certainty by this technique. Suggest which element is most difficult to locate.	(e)	(i)		
 (ii) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the elements still cannot be located with certainty by this technique. Suggest which element is most difficult to locate. (1) Q15 				
 (ii) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the elements still cannot be located with certainty by this technique. Suggest which element is most difficult to locate. (1) Q15 				
 (ii) X-ray diffraction can be used to locate atoms or ions in molecules like chlorophyll. X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the elements still cannot be located with certainty by this technique. Suggest which element is most difficult to locate. (1) Q15 				
X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms of one of the elements still cannot be located with certainty by this technique. Suggest which element is most difficult to locate. (1) Q15			(2)	
(1) Q15		(ii)	X-rays are scattered by the electrons in atoms and ions. In chlorophyll the atoms	
			Suggest which element is most difficult to locate.	
(Total 12 marks)			(1)	Q15
			(Total 12 marks)	

l

16. Airbags, used as safety features in cars, contain sodium azide, NaN_3 . An airbag requires a large volume of gas to be produced in a few milliseconds. The gas is produced in this reaction:

 $2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$ ΔH is positive

When the airbag is fully inflated, 50 dm³ of nitrogen gas is produced.

(a) Calculate the number of molecules in 50 dm^3 of nitrogen gas under these conditions.

[The Avogadro constant = $6.02 \times 10^{23} \text{ mol}^{-1}$. The molar volume of nitrogen gas under the conditions in the airbag is 24 dm³ mol⁻¹].

(2)

Leave blank

(b) Calculate the mass of sodium azide, NaN_3 , that would produce 50 dm^3 of nitrogen gas.

(3)

(1) *(d) The airbag must be strong enough not to burst in an accident. An airbag which has burst in an accident is hazardous if the sodium azide in it has decomposed. Explain why this is so. (2) Q16 (Total 8 marks)
burst in an accident is hazardous if the sodium azide in it has decomposed. Explain why this is so.
(Total 8 marks)

l

	(iii) Name compound A formed in Reaction 1.
	Name
	(1)
))	What is added in Reaction 2 to make the product $CH_2(OH)CH(OH)CH_3$?
	(1)
	(1)
	(1) Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
	Complete the balanced equation for the formation of poly(propene) in Reaction 3
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae.
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae. $n(CH_2=CHCH_3) \rightarrow$
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae. n(CH ₂ =CHCH ₃) → (2) Poly(propene) fibres can be used to make fleece which is used at several horse racing
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae. n(CH ₂ ==CHCH ₃) → (2) Poly(propene) fibres can be used to make fleece which is used at several horse racing courses to prevent the ground becoming frozen.
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae. n(CH ₂ ==CHCH ₃) → (2) Poly(propene) fibres can be used to make fleece which is used at several horse racing courses to prevent the ground becoming frozen.
	Complete the balanced equation for the formation of poly(propene) in Reaction 3 using displayed formulae. n(CH ₂ ==CHCH ₃) → (2) Poly(propene) fibres can be used to make fleece which is used at several horse racing courses to prevent the ground becoming frozen.

L

 (e) (i) One stage in the mechanism of Reaction 5 is shown below. CH₃CH₂CH₃ + Cl* → CH₃CH₂CH₂* + HCl What is this step? (1) (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (1) (Total 11 marks) A student investigated a reaction which could be used to warm up coffee in self-heating cans. Mg(s) + Cu(NO₃)₂(aq) → Mg(NO₃)₂(aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm³ of 0.300 mol dm⁻³ copper(II) nitrate solution into a 100 cm³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C Temperature of copper(II) nitrate solution at start = 43 °C 		
CH ₃ CH ₂ CH ₃ + Cl* → CH ₃ CH ₂ CH ₂ * + HCl What is this step? (1) (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (2) (1) (3) (4) (5) (6) (6) (7) (8) (9) (9) <		
What is this step? (1) (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (ii) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (1) (Total 11 marks) A student investigated a reaction which could be used to warm up coffee in self-heating cans. $Mg(s) + Cu(NO_3)_2(aq) \rightarrow Mg(NO_3)_2(aq) + Cu(s)$ In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm^3 of $0.300 \text{ mol dm}^{-3}$ copper(II) nitrate solution into a 100 cm}^3 beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C	(e) (i)	One stage in the mechanism of Reaction 5 is shown below.
 (i) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (Total 11 marks) A student investigated a reaction which could be used to warm up coffee in self-heating cans. Mg(s) + Cu(NO ₃) ₂ (aq) → Mg(NO ₃) ₂ (aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm ³ of 0.300 mol dm ⁻³ copper(II) nitrate solution into a 100 cm ³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C		$CH_3CH_2CH_3 + Cl^{\bullet} \rightarrow CH_3CH_2CH_2^{\bullet} + HCl$
 (i) Give the name or formula of the trace product present in the final mixture which gives evidence for this mechanism. (1) (1)		What is this step?
(1) gives evidence for this mechanism. (1) (Total 11 marks) A student investigated a reaction which could be used to warm up coffee in self-heating cans. Mg(s) + Cu(NO ₃) ₂ (aq) → Mg(NO ₃) ₂ (aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm ³ of 0.300 mol dm ⁻³ copper(II) nitrate solution into a 100 cm ³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C		
 (Total 11 marks) A student investigated a reaction which could be used to warm up coffee in self-heating cans. Mg(s) + Cu(NO₃)₂(aq) → Mg(NO₃)₂(aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm³ of 0.300 mol dm⁻³ copper(II) nitrate solution into a 100 cm³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. 	(ii)	
 A student investigated a reaction which could be used to warm up coffee in self-heating cans. Mg(s) + Cu(NO₃)₂(aq) → Mg(NO₃)₂(aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm³ of 0.300 mol dm⁻³ copper(II) nitrate solution into a 100 cm³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C		(1)
 cans. Mg(s) + Cu(NO₃)₂(aq) → Mg(NO₃)₂(aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm³ of 0.300 mol dm⁻³ copper(II) nitrate solution into a 100 cm³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C 		(Total 11 marks)
 cans. Mg(s) + Cu(NO₃)₂(aq) → Mg(NO₃)₂(aq) + Cu(s) In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm³ of 0.300 mol dm⁻³ copper(II) nitrate solution into a 100 cm³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C 		
In the self-heating cans, the bottom has a compartment containing copper(II) nitrate solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm ³ of 0.300 mol dm ⁻³ copper(II) nitrate solution into a 100 cm ³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C		ent investigated a reaction which could be used to warm up coffee in self-heating
 solution. When a button on the bottom of the can is pressed, the magnesium powder is released into the compartment where it reacts with the copper(II) nitrate solution. (a) A student investigated the enthalpy change for this reaction by measuring 50.0 cm³ of 0.300 mol dm⁻³ copper(II) nitrate solution into a 100 cm³ beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C 		$Mg(s) + Cu(NO_3)_2(aq) \rightarrow Mg(NO_3)_2(aq) + Cu(s)$
50.0 cm^3 of $0.300 \text{ mol dm}^{-3}$ copper(II) nitrate solution into a 100 cm^3 beaker and adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C	solution	n. When a button on the bottom of the can is pressed, the magnesium powder is
adding 1 g (an excess) of magnesium powder. The results are shown below. Temperature of copper(II) nitrate solution at start = 22 °C	(a) A s	student investigated the enthalpy change for this reaction by measuring
Temperature of copper(II) nitrate solution at start = $22 ^{\circ}\text{C}$		
	Th	e results are shown below.

Leave blank (i) Calculate the energy change which took place. The specific heat capacity of the solution is 4.20 J $g^{-1}K^{-1}$. Which is the correct value for the energy change in joules? (1) (ii) How many moles of copper(II) nitrate were used in the experiment? (1) (iii) Calculate the enthalpy change for the reaction. You should include a sign and units in your answer. (2)

	the accuracy of the result.
	(2)
o) The	e ionic equation for the reaction is shown below:
Mg	(s) + $\operatorname{Cu}^{2+}(\operatorname{aq}) \rightarrow \operatorname{Mg}^{2+}(\operatorname{aq}) + \operatorname{Cu}(s)$ $\Delta H = -532 \text{ kJ mol}^{-1}$
Wo	uld the following affect the value of the experimental result?
	plain your answer, stating the effect, if any, on the value of the enthalpy change ained.
*(i)	The student used 2 g rather than 1 g of magnesium.
	(2)
*(ii)	The heat losses that occurred from the student's beaker.
	(2)
	(2)

	• 1	Leave blank
(b) Use the data to calculate a value for the lattice energy of copper(II) brom	nde.	
Give a sign and units in your answer.		
	(3)	
(c) When the lattice energy of copper(II) bromide is calculated from ion charges, the result is a value numerically about 10% less than the one of the Born-Haber cycle.		
(i) What does this suggest about the nature of the bonding in copper(II)	bromide?	
	,	
	(1)	
(ii) Draw a diagram to show how the smaller copper ion alters the shape bromide ion.	of the larger	
	(1)	Q19
(Tota	al 8 marks)	
TOTAL FOR SECTION B:		
TOTAL FOR PAPER: 3 END	30 MARKS	

Sample Assessment Materials

BLANK PAGE

I

BLANK PAGE

BLANK PAGE

I

	0 (8)	(18) 4.0 helium 2	20.2	Ne	neon 10	39.9	Ar	18 18	83.8	ŗ	krypton 36	131.3	Xe	xenon 54	[222]	R	radon 86		p							
	2	(21)	19.0	Ŀ	fluorine 9	35.5	C	17	79.9		bromine 35	126.9	-	iodine 53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported		175	Lu	lutetium 71	[257]	Lr	103
	9	(16)	16.0	0	oxygen 8	32.1	S	16	79.0	Se	selenium 34	127.6	Ъ	tellurium 52	[209]	8	polonium 84		-116 have b	nticated	173	٩۲	ytterbium 70	[254]	No mobilition	102
	2	(15)	14.0	z	nitrogen 7	31.0	4	15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		mbers 112	uuy autne	169	Tm	thulium 69	[256]	PW	101
	4	(14)	12.0	U	carbon 6	28.1	Si	14	72.6	e	germanium 32	118.7	Sn	ti 20	207.2	Pb	lead 82		atomic numbers 112-116 hav but not fully authenticated			Ъ	erbium 68		Fm ^{formium}	
	ĸ	(13)	10.8	8	boron 5	27.0	AI	auminum 13	69.7	Ga	gallium 31	114.8	Ē	indium 49	204.4	Ħ	thallium 81		nents with		165	РH	holmium 67	[254]	ES	errsteimum 99
ients								(12)	65.4	Zn	zinc 30	112.4	PC	cadmium 48	200.6	Hg	mercury 80	Eleme		163	Q	dysprosium 66	[251]	Cf Es	camornum 98	
Elem									63.5	C	copper 29	107.9	Ag	silver 47	197.0	٩u	gold 79	[272]	Rg	roentgenium 111	159	đ	terbium 65	[245]	BK hertelium	97
le of								(10)	58.7	ż	nickel 28	106.4	Рd	palladium 46	195.1	Ł	platinum 78	[271]	õ	109 1100 1100 1100 1100 1100 1100 1100	157	Рg	gadolinium 64	[247]	E u	96
c Tab								(6)	58.9	ა	cobalt 27	102.9		rhodium 45	192.2	╘	iridium 77	[268]	Mt	meitnenum 109	152	Eu	europium 63	[243]	Am	95
The Periodic Table of Elements		1.0 hydrogen						(8)	55.8	Fe	iron 26	101.1	Ru	molybdenum technetium ruthenium 38 43 44	190.2	õ	osmium 76	[277]	Hs.	108	150		samarium 62	[242]	Np Pu Am	94
Je Pe								(2)	54.9	Mn	manganese 25	[98]	Ч	technetium 43	186.2	Re	rhenium 75	-	B	107	[147]	Pa	59 60 61 61 61	[237]	P D	93 93
Ē			mass	pol	umber]		(9)	52.0	ა	chromium manganese 24 25	95.9	Wo	molybdenum 38	183.8	≯	tungsten 74	[266]	Sg	seaborgium 106	144	PX	neodymium 60		U U	
		Key	relative atomic mass	atomic symbol	name atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	qN	niobium 41	180.9	Та	tantalum 73	I_		dubnium 105	141	Pr	praseodymium 59	[231]	Pa	protactimum 91
			relati		atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ħ	hafnium 72	[261]	Rf	104	140	S	cerium 58	232	Th Thorium	90
								(3)	45.0	S	scandium 21	88.9	۲	yttrium 39	138.9	La*	lathanum 57	[227]	Ac*	actimum 89		s				
	2	(2)	9.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[226]	Ra	88		 Lanthanide series 	* Actinide series			
	-	(1)	6.9	:5	lithium 3	23.0		11	39.1	¥	potassium 19	85.5	ď	rubidium 37	132.9	ۍ	caesium 55	[223]	ŗ	rrancium 87		* Lanth	* Actini			