AQA Qualifications

A-LEVEL

Chemistry
CHEM1 Foundation Chemistry
Mark scheme

2420
June 2015

Version 1 - Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Question	Marking Guidance	Mark	Comments
1(a)	Silicon / Si covalent (bonds) Strong or many of the (covalent) bonds need to be broken / needs a lot of energy to break the (covalent) bonds	1 1	If not silicon then $C E=0 / 3$ M3 dependent on correct M2 Ignore hard to break
1(b)	Argon / Ar Large(st) number of protons / large(st) nuclear charge Same amount of shielding / same number of shells / same number of energy levels	1 1	If not argon then $\mathrm{CE}=0 / 3$. But if Kr chosen, lose M1 and allow M2+M3 Ignore smallest atomic radius Allow similar shielding
1(c)	Chlorine / Cl	1	Not Cl_{2}, Not CL, not Cl^{2}

1 (d)(i)	Or any structure with 3 bonds and 2 lone pairs		
1(d)(ii)	Bent $/ \mathrm{V}$ shape	1	Ignore any angles shown
1(d)(iii)	$\frac{1}{2} \mathrm{Cl}_{2}+\frac{3}{2} \mathrm{~F}_{2} \longrightarrow \mathrm{ClF}_{3}$	1	Or a structure with 2 bonds and 1 lone pair

Question	Marking Guidance	Mark	Comments
2(a)	$5 s^{2} 4 d^{10} 5 p^{4} \quad / \quad 4 d^{10} 5 s^{2} 5 p^{4}$	1	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{4}$ or $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{4}$ Allow any order but must finish with $5 p^{4}$
2(b)(i)	$\begin{aligned} & \frac{(124 \times 2)+(126 \times 4)+(128 \times 7)+(130 \times 6)}{19} \text { or } \frac{2428}{19} \\ & \frac{127.8}{\text { Or }} \\ & \frac{(124 \times 10.5)+(126 \times 21.1)+(128 \times 36.8)+(130 \times 31.6)}{100} \\ & \underline{127.8} \end{aligned}$	1 1 1 Or 1 1 1	M1 for top line M2 for correct denominator 127.8 with no working shown scores 3 marks Mark for 100 dependent on top line correct
2(b)(ii)	Other isotopes present/some isotopes absent /different abundances of isotopes	1	
2(c)	$\mathrm{Te}^{+}+\mathrm{e}^{(-)} \rightarrow \mathrm{Te}$	1	Ignore state symbols Allow $\mathrm{Te}^{2+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{Te}$

2(d)	128	1	Only
	Most abundant ion (QoL - superlative)	1	M2 dependent on correct M1
$2(e)$	2+ ion formed / 2 electrons removed From ${ }^{128}(\mathrm{Te})$	1 1	Due to ${ }^{128} \mathrm{Te}^{2+}=2$ marks Mark independently

$2(f)$	Same	1	If not same $\mathrm{CE}=0 / 2$
	(Each isotope has the) same number of protons/same nuclear charge and same number of electrons / electronic configuration	1	Ignore more neutrons in ${ }^{130} \mathrm{Te}$

Question	Marking Guidance	Mark	Comments
$3(\mathrm{a})$	Macromolecular / giant covalent / giant molecule	1	Not giant atomic
$3(\mathrm{~b})$	No delocalised electrons / no free ions / no free charged particles	1	
$3(c)$	$\mathrm{SiO}_{2}+6 \mathrm{HF} \longrightarrow \mathrm{H}_{2} \mathrm{SiF}_{6}+2 \mathrm{H}_{2} \mathrm{O}$	1	Accept multiples

Question	Marking Guidance	Mark	Comments
4(a)	0.943 g water (M1) NiSO_{4} $\frac{1.344}{154.8}$ $(\mathrm{M} 2)$ $\frac{\mathrm{H}_{2} \mathrm{O}}{18}$ $\left(8.68 \times 10^{-3}\right.$ $0.052)$ 1 6 or $x=\underline{6}$ $(\mathrm{M} 4)$ Allow other methods eg $\begin{aligned} & M_{r}\left(\mathrm{NiSO}_{4}\right)=58.7+32.1+64.0=154.8 \\ & \mathrm{n}\left(\mathrm{NiSO}_{4}\right)=\frac{1.344}{154.8}=0.008682 \mathrm{~mol} \quad(\mathrm{M} 1) \\ & M_{\mathrm{r}}\left(\mathrm{NiSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}\right)=\frac{2.287}{0.008682}=(263.4) \quad(\mathrm{M} 2) \\ & \text { so } 18 x=263.4-154.8=(108.6) \quad(\mathrm{M} 3) \\ & \text { so } x=\frac{108.6}{18}=\underline{6} \quad(\mathrm{M} 4) \end{aligned}$	4	If Mr of NiSO_{4} wrong, can allow M1 and M3 from method 1 i.e. $\max 2$ Allow Mr $=155$ If using alternative method and Mr of NiSO_{4} wrong, allow ecf to score M2 and M3 only i.e. $\max 2$
4(b)	re-heat check that mass is unchanged	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Heat to constant mass = 2 marks M2 dependent on M1 Allow as alternative:

			M1: record an IR spectrum M2: peak between 3230 and $3550\left(\mathrm{~cm}^{-1}\right)$
Question	Marking Guidance	Mark	Comments
5(a)	94-105.5 ${ }^{\circ}$	1	
5(b)(i)	Hydrogen bond(ing) / H bonding/H bonds	1	Not just hydrogen

5(b)(ii)		3	1 mark for all lone pairs 1 mark for partial charges on the O and the H that are involved in H bonding 1 mark for the H -bond, from $\mathrm{H} \delta+$ on one molecule to lone pair on O of other molecule
5(c)	Electronegativity of S lower than O or electronegativity difference between H and S is lower No hydrogen bonding between $\mathrm{H}_{2} \underline{\mathrm{~S}}_{2}$ molecules Or only van der Waals / only dipole-dipole forces between $\mathrm{H}_{2} \underline{\mathrm{~S}}_{2} \underline{\text { molecules }}$	1	Mark independently If breaking covalent bonds $C E=0$

Question	Marking Guidance	Mark	Comments
6(a)	Saturated - single bonds only / no double bonds Hydrocarbon - contains carbon and hydrogen (atoms) only	1	
6(b)	$\mathrm{C}_{16} \mathrm{H}_{34}+16.5 \mathrm{O}_{2} \longrightarrow 16 \mathrm{CO}+17 \mathrm{H}_{2} \mathrm{O}$	1	Allow multiples
6(c)	(On combustion) SO_{2} produced Which causes acid rain		Allow equation to produce SO_{2}. Ignore sulfur oxides. If formula shown it must be correct M 2 is dependent on M1. But if M1 is sulfur oxides, allow M2. For M2 allow consequence of acid rain or SO_{2} Ignore greenhouse effect and toxic
6(d)(i)	$\mathrm{C}_{16} \mathrm{H}_{34} \longrightarrow \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{C}_{3} \mathrm{H}_{6}$	1	Allow multiples

6(d)(ii)	polypropene / propan(-1 or 2-)ol / propane(-1,2-)diol / isopropanol / propanone / propanal	1	Accept alternative names Ignore plastic and polymer
6(d)(iii)		1	
6(e)		1	Allow any unambiguous representation
6(f)	2,4-dichloro-2,4-dimethylhexane	1	Only but ignore punctuation

Question	Marking Guidance	Mark	Comments
7(a)	M1 $550 \times \frac{100}{95}=579 \mathrm{~g}$ would be 100% mass M2 So $\frac{579}{65}=8.91$ moles NaN_{3} or M1 $\underline{550}=8.46$ moles NaN_{3} (this is 95%) 65 M2 So 100% would be $8.46 \times \underline{100}=8.91$ moles NaN_{3} 95 Then M3 Moles $\mathrm{NaNH}_{2}=8.91 \underline{\times 2}=(17.8(2)$ moles $)$ M4 mass $\mathrm{NaNH}_{2}=17.8(2) \times 39$ M5 $\underline{693}$ or $\underline{694}$ or $\underline{695}(\mathrm{~g})$	1 1 1 1 1	Allow alternative methods. There are 4 process marks: $1: \text { mass } \div 65$ 2: mass or moles $\times 100 / 95$ or $\times 1.05$ 3: moles $\mathrm{NaN}_{3} \times 2$ 4: moles $\mathrm{NaNH}_{2} \times 39$ If 693 , 694 or 695 seen to 3 sig figs award 5 marks

7(b)	M1 308 K and 150000 Pa	1	
	$\text { M2 } n=\frac{P V}{R T} \text { or } \frac{150000 \times 7.5 \times 10^{-2}}{8.31 \times 308}$	1	
	$\mathrm{M} 3=4.4(0)$ or 4.395 moles N_{2}	1	Allow only this answer but allow to more than 3 sig figs
	$\text { M4 Moles } \mathrm{NaN}_{3}=4.395 \times \frac{2}{3}(=2.93)$	1	M4 is for M3 $\times \frac{2}{3}$
	M5 Mass $\mathrm{NaN}_{3}=(2.93) \times \underline{65}$	1	M5 is for moles M4 $\times 65$
	$\mathrm{M} 6=191 \mathrm{~g}$		
		1	Allow 190 to 191 g allow answers to 2 sig figs or more

7(c)(i)

$7(e)$ (i)	$\mathrm{N} \equiv \mathrm{N} \rightarrow \mathrm{N}^{-}$	1	Only
$7(e)$ (ii)	$\mathrm{CO}_{2} / \mathrm{N}_{2} \mathrm{O} / \mathrm{BeF}_{2} / \mathrm{HN}_{3}$	1	Allow other correct molecules
$7(e)$ (iii)	MgN_{6}	1	Only

It is important to note that the guidance given here is generic and specific variations may be made in the mark scheme.
Basic principles

- Examiners should note that throughout the mark scheme, items that are underlined are required information to gain credit.
- Occasionally a response involves incorrect chemistry and the mark scheme records $C E=0$, which means a chemical error has occurred and no credit is given for that section of the clip or for the whole clip.

The "List principle" and the use of "ignore" in the mark scheme

If a question requires one answer and a student gives two answers, no mark is scored if one answer is correct and one answer is incorrect. There is no penalty if both answers are correct.

NB Certain answers are designated in the mark scheme as those that the examiner should "lgnore". These answers are not counted as part of the list and should be ignored and will not be penalised.

Incorrect case for element symbol

The use of an incorrect case for the symbol of an element should be penalised once only within a clip.
For example, penalise the use of "h" for hydrogen, "CL" for chlorine or "br" for bromine.

Spelling

In general

- The names of organic chemical compounds and functional groups must be spelled correctly, when specifically asked for, to gain credit.
- Phonetic spelling may be acceptable for some chemical compounds (eg amonia would be phonetically acceptable. However, ammoniam would be unacceptable since it is ambiguous).
NB Some terms may be required to be spelled correctly or an idea needs to be articulated with clarity, as part of the "Quality of Language" (QoL) marking. These will be identified in the mark scheme and marks are awarded only if the QoL criterion is satisfied.

Equations

In general

- Equations must be balanced.
- State symbols are generally ignored, unless specifically required in the mark scheme.

Lone Pairs

The following representations of lone pairs in structures are acceptable.
$\left.\right|^{x}$
OR X

OR
X X
OR

Reagents

The command word "Identify", allows the candidate to choose to use either the name or the formula of a reagent in their answer. In some circumstances, the list principle may apply when the name and formula contradict. Specific details will be given in mark schemes.

Marking calculations

In general

- A correct answer alone will score full marks unless the necessity to show working is specifically required in the question.
- If a candidate has made an arithmetical error or a transcription error deduct one mark, but continue marking (error carried forward).

Organic structures

In general

- Displayed formulae must show all of the bonds and all of the atoms in the molecule, but need not show correct bond angles.
- Bonds should be drawn correctly between the relevant atoms.
- Latitude should be given to the representation of $\mathrm{C}-\mathrm{C}$ bonds in structures, given that $\mathrm{CH}_{3}-$ is considered to be interchangeable with $\mathrm{H}_{3} \mathrm{C}-$ even though the latter would be preferred.
- The following representations are allowed:-

